
Intermolecular Forces and Generalized

TDDFT Response Functions in
Liouville Space ?

1 Introduction

Consider two interacting systems with nonoverlapping charge distributions.
How can the properties of the combined system be expressed in terms of
properties of the individual systems alone? This general problem appears in a
wide variety of physical, chemical and biological contexts [1–3]. In this chapter
we will provide a prescription for resolving this issue by the computation of i)
response functions and ii) correlation functions of spontaneous fluctuations,
of relevant degrees of freedom in the individual systems.

The computation of response and correlations is greatly simplified by us-
ing the density matrix in Liouville space[4]. Hilbert and Liouville space offer
very different languages for the description of nonlinear response. Computing
dynamical observables in terms of the wavefunction in Hilbert space requires
both forward and backward propagations in time. In contrast, the density
matrix, calculated in Liouville space should only be propagated forward. The
choice is between following the ket only, moving it forward and backward,
or following the joint forward dynamics of the ket and the bra. Artificial
time variables (Keldysh loops) commonly used in many-body theory [5] are
connected with the wavefunction. The density matrix which uses the real lab-
oratory timescale throughout the calculation offers a more intuitive picture.
Wavefunction-based theories calculate transition amplitudes, which by them-
selves are not observable. The density matrix on the other hand calculates
physical observables. Moreover, dephasing processes (damping of off-diagonal
elements of density operator resulting from phase fluctuations) can only be
described in Liouville space.

In this chapter we present a method for expressing the joint response of
two interacting systems in terms of the correlations and response functions of
the individual systems. This factorization appears quite naturally in Liouville
space. The pth order response of the individual systems is a linear combina-
tion of 2p distinct (p + 1)-point correlation functions known as Liouville space
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pathway [4], which differ by whether the interaction at each time is with the
bra or the ket. The pth order contribution to the intermolecular interaction
requires a different linear combination of these same Liouville space path-
ways of both molecules. The 2p Liouville space pathways are conveniently
combined into p+1 generalized response functions (GRFs)[6,7]. One of the
GRFs is the ordinary (causal) response function. The other GRFs represent
spontaneous fluctuations, and the response of these fluctuations to a pertur-
bation, and are therefore non-causal. The complete set of GRFs is calculated
using generalized TDDFT equations in Liouville space.

A direct DFT simulation of molecular complexes by treating them as su-
permolecules is complicated because it requires nonlocal energy functionals[8–
10]. The response approach makes good use of the perturbative nature of
the coupling and recasts the energies in terms of properties of individual
molecules which, in turn, may be calculated using local functionals[11,12].

2 Quantum Dynamics in Liouville Space;
Superoperators

In this section we introduce the notion of Liouville space superoperators and
review some of their useful properties. A detailed discussion of superopera-
tors is given in [14]. The elements of an N × N density matrix in Hilbert
space are arranged as a vector of length N 2 in Liouville space. An operator
in Liouville space is then a matrix of dimension N 2 × N2, and is called a
superoperator. Two special superoperators, AL and AR, are associated with
every Hilbert space operator, A, and implement “left” and “right” multipli-
cation on another operator X : ALX ⇔ AX , ARX ⇔ XA. These relations
are not written as equalities because X is a vector in Liouville space and a
matrix in Hilbert space.

It will be useful to define the symmetric A+ ≡ 1
2 (AL + AR) and antisym-

metric A− ≡ AL − AR combinations. Hereafter we shall use Greek indices
to denote superoperators Aν with ν = L, R or ν = +,−. Recasting these
definitions in Hilbert space using ordinary operators we get

A+X ⇔
1

2
(AX + XA); A−X ⇔ AX − XA. (1)

A product of ± superoperators constitutes a series of nested commutators
and anticommutators in Hilbert space. It is easy to verify that

(AB)− = A+B− + A−B+, (AB)+ = A+B+ +
1

4
A−B− . (2)

We now consider products of superoperators that depend parametrically
on time. We introduce a time ordering operator T in Liouville space, which
orders all superoperators to its right such that time decreases from left to
right. This is the natural time-ordering which follows chronologically the
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various interactions with the density matrix [13]. We can freely commute
operators following a T without worrying about commutations because in
the end the order will be fixed by T .

The expectation value of any superoperator, Aν , is defined as,

〈Aν(t)〉 = Tr{Aν(t)ρeq}, (3)

where ρeq is the equilibrium density matrix. It is easy to see that for any two
operators A and B,

〈T A+(t)B−(t′)〉 = 0 if t′ > t. (4)

〈T A+(t)B−(t′)〉 is thus a retarded (i.e. causal) function. Equation (4) follows
from the definitions (1): A ‘−’ superoperator corresponds to a commutator in
Hilbert space, so for t < t′, 〈T A+(t)B−(t′)〉 becomes a trace of a commutator
which vanishes. Similarly, the trace of two ‘−’ operators vanishes:

〈T A−(t)B−(t′)〉 = 0 for all t and t′ . (5)

We next introduce the interaction picture for superoperators. We parti-
tion the Hamiltonian, H = H0 + HI , into a reference part, H0, which can
be diagonalized, and the remainder, interaction part, HI . We define a cor-
responding superoperator, H−, as H− = H0− + HI−. The time evolution of
the density matrix is given by the Liouville equation:

∂ρ

∂t
= −

i

h̄
H−ρ . (6)

Equation (6) has the formal Green function solution, ρ(t) = G(t, t0)ρ(t0).
Note that the time evolution operator, G, acts only from the left, implying
forward evolution of the density matrix. The total time evolution operator

G(t, t0) = T exp

{

−
i

h̄

∫ t

t0

dτH−(τ)

}

, (7)

can be partitioned as:

G(t, t0) = G0(t, t0)GI (t, t0) (8)

where G0 describes the time evolution with respect to H0

G0(t, t0) = θ(t − t0) exp

{

−
i

h̄
H0−(t − t0)

}

, (9)

and GI is the time evolution operator in the interaction picture

GI (t, t0) = T exp

{

−
i

h̄

∫ t

t0

dτH̃I−(τ)

}

. (10)
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The time dependence of a superoperator in the interaction picture, denoted
by a (̃ ) is defined as

Ãν(t) = G†
0(t, t0)Aν(t0)G0(t, t0) . (11)

The equilibrium density matrix of the interacting system can be generated
from the density matrix of the noninteracting system (ρ0) by an adiabatic
switching of the interaction HI , starting at time t = −∞: ρeq = GI(0,−∞)ρ0.
In the wavefunction (Gell-Mann-Low) formulation of adiabatic switching,
the wavefunction acquires a singular phase which must be cancelled by a
denominator given by the closed loop S matrix[25]; this unphysical phase
never shows up in Liouville space.

For a set of operators {Ai}, the pth order generalized response functions

(GRF) are defined as

R
νp+1...ν1

ip+1...i1
(tp+1 . . . t1) =

(

−i

h̄

)p′

〈T Aip+1νp+1
(tνp+1

) . . . Ai1ν1
(t1)〉0, (12)

where 〈. . .〉0 represents a trace with respect to ρ0, the indices νn = + or −,
and p′ denotes the number of ‘−’ indices in the set {νp+1 . . . ν1}. There are
p + 1, pth order GRFs, having different number of ‘−’ indices. Each member
of the pth order GRF represents to a different physical process. For example,
there are two first order GRFs,

R++
i2i1

(t2, t1) = 〈T Ai2+(t2)Ai1+(t1)〉0

R+−
i2i1

(t2, t1) =
−i

h̄
〈T Ai2+(t2)Ai1−(t1)〉0. (13)

Recasting them in Hilbert space we have

R+−
i2i1

(t2, t1) =
−i

h̄
θ(t2 − t1)

[

Tr{Ai2(t2)Ai1 (t1)ρ0} − Tr{Ai2(t2)Ai1(t1)ρ0}
]

= h̄−1θ(t2 − t1)ImJ(t2, t1)

R++
i2i1

(t2, t1) = Tr{Ai1(t1)Ai2 (t2)ρ0} + Tr{Ai2(t2)Ai1(t1)ρ0}

= ReJ(t2, t1) (14)

where J(t2, t1) = Tr{Ai2(t2)Ai1(t1)ρ0}. With the factor h̄−1 the GRF R+−

has a well defined classical limit [14]. R+− is causal [see (5)] and represents
the response of the system at time t2 to an external perturbation acting at
an earlier time t1. On the other hand, R++ is non-causal and denotes the
correlation of A at two times. Each ‘−’ index corresponds to the interaction
with an external perturbation while a ‘+’ index denotes an observation. In
general, time-ordered Liouville space correlation functions with one ‘+′ and
several ‘−′ indices, R+−, R+−−, R+−−−, etc. give response functions; all ′+′

correlation functions of the form R++, R+++, R++++, etc. give ground state
fluctuations, wheras R++−, R++−−, R+++−, etc. represent changes in the
fluctuations caused by an external perturbation.
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3 TDDFT Equations of Motion for the GRFs

Time dependent density functional theory is based on the effective one-body
Kohn-Sham (KS) Hamiltonian [15],

HKS(n(r1, t)) = −
h̄2∇2

2m
+ U(r1) + e2

∫

dr2
n(r2, t)

|r1 − r2|
+ Uxc(n(r1, t)), (15)

where the four terms represent the kinetic energy, the nuclear potential, the
Hartree, and the exchange correlation potential, respectively.

We now introduce the reduced single electron density matrix ρ̂ [16–20]
whose diagonal elements give the charge distribution, n(r1, t) = ρ(r1, r1, t)
and the off-diagonal elements, ρ(r1, r2), represent electronic coherences. Here-
after we shall denote matrices in real space such as ρ̂ by a caret. We further
denote the ground state density matrix by ρ̂g .

The GRF corresponding to the charge density may be calculated by solv-
ing the time dependent generalized KS equation of motion for ρ̂[27,22],

ih̄
∂

∂t
δρ̂ = [ĤKS(n), ρ̂(t)] + Ûket(t)ρ̂(t) − ρ̂(t)Ûbra(t), (16)

where δρ(r1, r2, t) ≡ ρ(r1, r2, t) − ρg(r1, r2) is the change in the density
matrix induced by the external potentials Uket and Ubra. Equation (16) differs
from the standard TDDFT equations in that the system is coupled to two
external potentials, a “left” one Uket acting on the ket and a “right” one Ubra

acting on the bra.
We next define linear combinations,

U−(r, t) ≡
1

2
(Uket(r, t) + Ubra(r, t))

U+(r, t) ≡
1

2
(Ubra(r, t) − Uket(r, t)), (17)

and the diagonal matrices U−(r1, r2) = U−(r1)δ(r1 − r2), U+(r1, r2) =
U+(r1)δ(r1 − r2). Note that Û− is given by a sum and Û+ by a difference.
The reason for this somewhat confusing notation is that Û−(Û+) will enter in
a commutator (anticommutator) in equation of motion for ρ̂(t). δρ̂ serves as a
generating function for GRFs, which are obtained by a perturbative solution
of (16) in U−(r, t) and U+(r, t) using H0 = HKS , as we shall shortly see.

Equation (16) can be recast in terms of superoperators,

ih̄
∂

∂t
δρ̂ = HKS

− ρ̂(t) + U−(t)ρ̂(t) − U+(t)ρ̂(t) (18)

where

U−ρ̂ ≡ [Û−, ρ̂], U+ρ̂ ≡ [Û+, ρ̂]+, HKS
− ρ̂ ≡ [ĤKS , ρ̂] . (19)
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The pth order GRFs χνp+1...ν1 , are computed as the kernels in a per-
turbative expansion of the charge density fluctuation, δn(r1, t)=δρ(r1, r1, t),
in the applied potentials, U+ and U−. Adopting the abbreviated space-time
notation xn ≡ (rn, tn), we get

〈δn+(xp+1)〉
(p) ≡

∫

drpdtp...

∫

dr1dt1χ
νp+1νp...ν1(xp+1, xp, ..., x1)

× Uνp
(xp)Uνp−1

(xp−1)...Uν1
(x1) . (20)

It follows from (16) and (20) that

χνp+1...ν1(xp+1 . . .x1) =

(

−i

h̄

)p′

〈T δnνp+1(xp+1) . . . δnν1(x1)〉 (21)

where p′ denotes the number of “minus” indices in the set {νp+1 . . . ν1}. To
first order (p=1), we have

χ++(x1, x2) = 〈T δn+(x1)δn
+(x2)〉

= θ(t1 − t2)〈δn
+(x1)δn

+(x2)〉 + θ(t2 − t1)〈δn
+(x2)δn

+(x1)〉

χ+−(x1, x2) =
−i

h̄
〈T δn+(x1)δn

−(x2)〉

=
−i

h̄
θ(t1 − t2)〈δn

+(x1)δn
−(x2)〉. (22)

The standard TDDFT equations which only yield ordinary response func-
tions are obtained by setting Uket = Ubra so that U+ = 0 in (18). By al-
lowing Uket and Ubra to be different we can generate the complete set of
GRF. The ordinary response function χ+− characterizes the response of the
density to an applied potential U−[4]. Similarly, χ++ can be formally ob-
tained as the response to the artificial external potential, U+, that couples to
the charge density through an anticommutator. χ++ represents equilibrium
charge fluctuations and is therefore non-retarded. van Leeuwen’s resolution
of the “causality paradox” of TDDFT [15] has been recently formulated [27]
in Liouville space.

4 Collective Electronic Oscillator (CEO)
Representation of the GRF

Since the TDDFT density matrix, ρ̂(t), corresponds to a many-electron wave-
function given by a single Slater determinant at all times, it can be separated
into its electron-hole (interband) part ξ̂ and the electron-electron and hole-

hole (intraband) components, T (ξ̂)[17,21].

δρ̂(t) = ξ̂(t) + T̂ (ξ̂(t)) . (23)
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It follows from the idempotent property, ρ̂2 = ρ̂, that T̂ is uniquely deter-
mined by ξ̂ so that δρ̂ can be expressed solely in terms of ξ̂: [18,17]

T̂ (ξ̂) =
1

2
(2ρ̂g − Î)

{

Î −

√

Î − 4ξ̂ξ̂

}

. (24)

The elements of ξ̂ (but not of δρ̂) can thus be considered as independent

coordinates for describing the electronic structure.
We next expand HKS in powers of δn(r, t):

HKS = HKS
0 + HKS

1 + HKS
2 + ...

HKS
0 (n̄(r1)) = −

h̄2∇2

2m
+ U(r1) + e2

∫

dr2
n̄(r2, t)

|r1 − r2|
+ Uxc(n̄(r1, t))

HKS
1 (δn(r1)) =

∫

dr2

(

e2

|r1 − r2|
+ fxc(r1, r2)

)

δn(r2, t), (25)

with fxc the first order exchange correlation kernel in the adiabatic approxi-
mation where it is assumed to be frequency independent,

fxc(r1, r2) =

∣

∣

∣

∣

δUxc[n(r1)]

δn(r2)

∣

∣

∣

∣

n̄

. (26)

The second order term in density fluctuations is,

HKS
2 (δn(r1)) =

∫ ∫

dr2dr3gxc(r1, r2, r3)δn(r2, t)δn(r3, t) (27)

with the kernel(in adiabatic approximation),

gxc(r1, r2, r3) =

∣

∣

∣

∣

δ2Uxc[n(r1)]

δn(r2)δn(r3)

∣

∣

∣

∣

n̄

. (28)

A quasiparticle algebra can be developed for ξ̂ by expanding it in the basis
set of CEO modes, ξ̂α, which are the eigenvectors of the linearized TDDFT
eigenvalue equation with eigenvalues Ωα [17,16].

L̂ξ̂α = Ωαξ̂α, (29)

The linearized Liouville space operator, L̂ is obtained by substituting (25)
into (16),

L̂ξ̂α = [ĤKS
0 (n̄), ξ̂α] + [ĤKS

1 (ξα), ρ̂g ]. (30)

ĤKS
0 and ĤKS

1 are diagonal matrices with matrix elements

HKS
0 (n̄)(r1, r2) = δ(r1 − r2)H

KS
0 (n̄)(r1)

HKS
1 (ξα)(r1, r2) = δ(r1 − r2)

∫

dr3

(

e2

|r2 − r3|
+fxc(r2, r3)

)

ξα(r3, r3)(31)
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The eigenmodes ξ̂α come in pairs represented by positive and negative values
of α, and we adopt the notation, Ω−α = −Ωα and ξ̂−α = ξ̂†α. Each pair of
modes represents a collective electronic oscillator (CEO) and the complete

set of modes ξ̂α may be used to describe all response and spontaneous charge
fluctuation properties of the system.

By expanding ξ̂(t) of the externally driven system in the CEO eigenmodes,

ξ̂(t)=
∑

α z̄α(t)ξ̂α, where α runs over all modes (positive and negative) and
z̄α are numerical coefficients, and substituting in (24) and (23), we obtain
the following expansion for the density matrix

δρ(r1, r2, t) =
∑

α

µα(r1, r2)z̄α(t) +
1

2

∑

α,β

µα,β(r1, r2)z̄α(t)z̄β(t) + . . . , (32)

where we have introduced the auxiliary quantities, µ̂α = ξ̂α and µ̂αβ= (2ρ̂g −

I)(ξ̂αξ̂β+ξ̂β ξ̂α).
By substituting (23) and (24) in (16) we can derive equations of motion

for the CEO amplitudes z̄α which can then be solved successively order by
order in the external potentials, Uν1

. To second order we get,

ih̄
dz̄α(t)

dt
= Ωαz̄α(t) + K−α(t) +

∑

β

K−αβ(t)z̄β(t), (33)

with the coefficients,

K−α(t) =
∑

ν

∫

dr1Uν(r1, t)µ
ν
−α(r1)

K−αβ(t) =
∑

ν

∫

dr1Uν(r1, t)µ
ν
−αβ(r1) . (34)

Here µ−
α (r1) ≡ µα(r1, r1), µ−

αβ(r1) ≡ µ̂αβ(r1, r1), µ+
α (r1) ≡ µ̃−α(r1, r1) =

1
2 (2ρ̂g−Î)ξ̂α(r1, r1) and µ+

αβ(r1) ≡ µ̃αβ(r1) = 1
2 (2ρ̂g−Î)(ξ̂αξ̂β−ξ̂β ξ̂α)(r1, r1).

We further expand z̄α = zν1
α + zν1ν2

α + .., in powers of the external
potentials, where zν1ν2...νp denotes the nth order term in the potentials,
Uν1

Uν2
...Uνp

. By comparing the terms in both sides, we obtain equations
of motion for z

ν1...νp
α for each order in external potential. To first order we

get,

ih̄
dzν1

α (t)

dt
= Ωαzν1

α (t) + K−α(t) (35)

The solution of (35) gives the generalized linear response functions

χ++(r1t1, r2t2) = θ(t1 − t2)
∑

α

µα(r1)µ̃−α(r2)e
− i

h̄
Ωα(t1−t2)

+ θ(t2 − t1)
∑

α

µα(r2)µ̃−α(r1)e
i
h̄

Ωα(t1−t2)

χ+−(r1t1, r2t2) = −
i

h̄
θ(t1 − t2)

∑

α

sαµα(r1)µ−α(r2)e
− i

h̄
Ωα(t1−t2) (36)
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with sα = sign(α). Higher order GRF can be obtained by repeating this
procedure [22].

We further consider generalized susceptibilities defined by the Fourier
transform of the response functions to the frequency domain,

〈δn+(rp+1ωp+1)〉
(p) =

∫ ∞

−∞

drpdωp...

∫ ∞

−∞

dr1dω1Uνp
(rpωp)...Uν1

(r1ω1)

× χνp+1...ν1(rp+1ωp+1, rpωp, ..., r1, ω1) (37)

where the frequency transform is defined as,

χν1ν2(r1ω1, r2ω2) =

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2exp{i(ω1t1 + ω2t2)}χ
ν1ν2(x1, x2) .

(38)
Equation (38) together with (36) gives,

χ++(r1ω1, r2ω2) = ih̄δ(ω1 + ω2)
∑

α

[

µα(r1)µ̃−α(r2)

ω2 − Ωα + iε
−

µα(r2)µ̃−α(r1)

ω2 + Ωα − iε

]

χ+−(r1ω1, r2ω2) = δ(ω1 + ω2)
∑

α

sαµα(r1)µ−α(r2)

ω2 + Ωα − iε
. (39)

The CEO representations of the ordinary response functions to third order
were given in [16] and the GRF to second order were given in [22].

The linear GRFs, χ++ and χ+−, are connected by the fluctuation dissi-

pation relation,

χ++(r1, ω; r2,−ω) = coth

(

βh̄ω

2

)

χ+−(r1, ω; r2,−ω) . (40)

To linear order, the ordinary response function provides the complete in-
formation and GRF are not needed. However such fluctuation dissipation
relations are not that simple for the higher order response functions[23] and
the complete set of GRF are required to describe the complete dynamics.

5 GRF Expressions for Intermolecular Interaction
Energies

We now show how the GRF may be used to compute the energy of two
interacting systems a and b with nonoverlapping charge distributions. At
time t = −∞ we take the density matrix to be a direct-product of the density
matrices of the individual molecules. Thus initial density matrix at time t →
−∞, ρ̂g

0, is given by, ρ̂g
0 = ρ̂a

0 ρ̂
b
0, where ρ̂a

0 and ρ̂b
0 represent the density matrices

of the two molecules at t → −∞. The Liouville space time-evolution operator
transforms this initial state into a correlated state. The GRF allow us to
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factorize the time-evolution operator into a sum of terms that individually
preserve the purity of the direct-product form.

We start with the total hamiltonian of two interacting molecules Hλ = Ha

+Hb +λHab, where Ha and Hb represent the Hamiltonians for individual
molecules and their coupling Hab is multiplied by the control parameter λ, 0 ≤
λ ≤ 1, where λ=1 corresponds to the physical Hamiltonian. We shall follow
the convention that primed and unprimed indices correspond to molecules a
and b, respectively. The charge densities of molecules a and b at space points r

and r
′ will be denoted by na(r) and nb(r

′), respectively. Hab is the Coulomb
interaction

Hab = −

∫ ∫

drdr
′J(r − r

′)na(r)nb(r
′) −

∑

k,k′

J(Rk − Rk′ )Zk(Rk)Zk′ (R′
k)

+
∑

P,k

∫

dr
′J(Rk − r

′)Zk(Rk)nb(r
′) (41)

where J(r − r
′) ≡ 1/|r − r

′| and Rk(R′
k′) represents the position of kth

(k′th) nucleus in molecule a(b) with charge Zk(Zk′).
∑

P represents the sum
over single permutation of primed and unprimed quantities together with
indices a and b. The interaction energy of the coupled system is obtained by
switching the parameter λ from 0 to 1 [10]

W =

∫ 1

0

dλ〈Hab〉λ. (42)

Here 〈. . .〉λ denotes the expectation value with respect to the λ-dependent
ground state many-electron density matrix of the system, ρ̂λ. We next par-
tition the charge densities of both molecules as, na(r)= n̄a(r) +δna(r),
nb(r

′)= n̄b(r
′) +δnb(r

′), where n̄ is the average density, n̄a(r) = ρ0
a(r, r),

and n̄b(r
′) = ρ0

b(r
′, r′). Thus the total interaction energy can be written as,

W = W (0)+W (I)+W (II), where,

W (0) = −

∫ ∫

drdr
′J(r − r

′)n̄a(r)n̄b(r
′) −

∑

k,k′

J(Rk − Rk′)Zk(Rk)Zk′(R′
k)

+
∑

P,k

∫

dr
′J(Rk − r

′)Zk(Rk)n̄b(r
′), (43)

is the average electrostatic energy, and the remaining two terms represent
the effects of correlated fluctuations.

W (I) = −

∫ 1

0

dλ

∫ ∫

drdr
′J(r − r

′) [n̄a(r)〈δnb(r
′)〉λ + n̄b(r

′)〈δna(r)〉λ] ,

+
∑

P,k

∫

dr
′J(Rk − r

′)Zk(Rk)〈δnb(r
′)〉λ

W (II) = −

∫ 1

0

dλ

∫ ∫

drdr
′J(r − r

′)〈δna(r)δnb(r
′)〉λ. (44)
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The expectation values 〈δna(r1)〉λ and 〈δna(r1)δnb(r
′
2)〉λ can be com-

puted perturbatively in λHab in the interaction picture. λHab is switched
on adiabatically giving the interacting ground state density matrix in terms
of the non-interacting one. Substituting for Hab from (41), and expanding
in powers of λ yields a perturbation series in terms of the pth order joint
response function, using x

′
n = (r′

n, tn),

R(p)
a (x, xp, x

′
p . . . x1, x

′
1) =

〈

T δñ+
a (x)[ña(xp)ñb(x

′
p)]

−...[ña(x1)ñb(x
′
1)]

−
〉

0
.

(45)
Making use of (2) and the fact that the initial density matrix is a direct

product of the density matrices of the individual molecules, R(p) can be
factorized in terms of GRFs of the individual molecules. For example, the
first order joint response function is:

R(1)
a (x, x1, x

′
1) =

〈

T δñ+
a (x)[ña(x1)ñb(x

′
1)]

−
〉

0

= Tr
{

T δñ+
a (x)[ña(x1ñb(x

′
1)]

−ρ̂0
aρ̂0

b

}

. (46)

Substituting ñν
a(x)= n̄ν

a(x) +δñν
a(x), ñν

b (x′)= n̄ν
b (x′) +δñν

b (x′), and using
the identities, 〈δñν

a(x)〉0a = 0 and 〈n̄+
a (x)〉0a= n̄a(x), we obtain

R(1)
a (x, x1, x

′
1) = in̄b(r

′
1)χ

+−
a (x, x1), (47)

where χ+−
a represents the linear order GRF for molecule a (see (21)). Sim-

ilarly, second and higher order joint response functions can be expressed in
terms of the GRFs of the individuals molecules.

In the present work we have ignored the contributions due to the nuclear
interactions in (41). 〈δna(r1)〉λ and 〈δna(r1)δnb(r

′
1)〉λ, and consequently the

interaction energies W (I) and W (II) can thus be expanded perturbatively in
terms of the GRFs of the individual molecules [22]. We shall collect terms
in W (I) and W (II) by their order with respect to charge fluctuations. The
total energy is then, W=

∑

j W (j), where W (j) represents contribution from

jth order charge fluctuation. W (0) was given in (43) and W (1) = 0. W (j) to
sixth order are given in [22].

W (2) = −
1

2

∑

P

∫ t1

−∞

dt2

∫ ∫

dR1dR2n̄b(r
′
1)n̄b(r

′
2)χ

+−
a (x1, x2)J(s1)J(s2)

(48)

W (3) =
1

6

∑

P

∫ t1

−∞

dt2

∫ t1

−∞

dt3

∫ ∫ ∫

dR1dR2dR3J(s1)J(s2)J(s3)

× n̄b(r
′
1)χ

+−−
a (x1, x2, x3)n̄b(r

′
2)n̄b(r

′
3) (49)
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W (4) =
1

6

∑

P

∫ t1

−∞

dt2

∫ t1

−∞

dt3

∫ ∫ ∫

dR1dR2dR3J(s1)J(s2)J(s3)

×
[

n̄a(r2)n̄b(r
′
3)χ

+−
a (x1, x3)χ

+−
b (x′

1, x
′
2)

+ n̄b(r
′
1)n̄a(r3)χ

+−
a (x1, x2)χ

+−
b (x′

2, x
′
3)

]

−
1

2

∑

P

∫ t1

−∞

dt2

∫ ∫

dR1dR2J(s1)J(s2)χ
++
a (x1, x2)χ

+−
b (x′

1, x
′
2) (50)

W (5) =
1

6

∑

P

∫ t1

−∞

dt2

∫ t1

−∞

dt3

∫ ∫ ∫

dR1dR2dR3J(s1)J(s2)J(s3)

×
{

χ+−−
b (x′

1, x
′
2, x

′
3)

[

n̄a(r1)χ
++
a (x2, x3) + n̄a(r2)χ

++
a (x1, x3)

+ n̄a(r3)χ
++
a (x1, x2) + n̄a(r1)χ

+−
a (x1, x3)

]

+ χ++−
b (x′

1, x
′
2, x

′
3)[n̄a(r2)χ

+−
a (x1, x3) + n̄b(r

′
3)χ

+−
b (x′

1, x
′
2)]

}

(51)

W (6) =
1

6

∑

P

∫ t1

−∞

dt2

∫ t1

−∞

dt3

∫ ∫ ∫

dR1dR2dR3J(s1)J(s2)J(s3)

×
[

χ+++
a (x1, x2, x3)χ

+−−
b (x′

1, x
′
2, x

′
3)

+ χ++−
a (x1, x2, x3)χ

++−
b (x′

1, x
′
2, x

′
3)

]

, (52)

where for brevity we have used the notations,
∫

dRn =
∫ ∫

drndr
′
n and

J(sn) = J(rn − r
′
n).

We have now at hand all the ingredients necessary for computing the inter-
molecular energies. The TDDFT results for the GRF of individual molecules
can be used to compute intermolecular interaction energy.

The second term in (50) reproduces McLachlan’s expression for the van
der Waals intermolecular energy [12,24]. Since χ+− and χ++ are related by
the fluctuation-dissipation theorem, the McLachlan expression may be recast
solely in terms of the ordinary response of two molecules, χ+−

a and χ+−
b .

W
(4)
vdW = −

1

2h̄

∫ ∞

−∞

dω

∫ ∫

dR1dR2J(s1)J(s2)

coth

(

βh̄ω

2

)

α+−
a (r1, r2, ω)α+−

b (r′
1, r

′
2, ω) (53)

where χν2ν1(r2ω2, r1ω1) = (h̄−1)p′

αν2ν1
a (r1, r2, ω1)δ(ω1 + ω2). Equation (53)

gives

W
(4)
vdW = −kBT

∞
∑

n=0

∫ ∫

dR1dR2α
+−
a (r1, r2, iωn)α+−

b (r′
1, r

′
2, iωn)J(s1)J(s2),

(54)
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where ωn = (2πnkBT/h̄) are the Matsubara frequencies. However, life is not
as simple for the higher order responses. The (p + 1), pth order generalized
response functions, χνp+1νp..ν1 , cannot all be related to the fully retarded or-
dinary response, χ+−...−. The complete set of generalized response functions
is thus required to represent the intermolecular forces.

By combining (48)-(52) with the CEO expansion, we can finally express
the intermolecular energies in terms of CEO modes of the separate molecules.
For example, substituting for χ+− and χ++ from (36) in (50), the fourth order
term is obtained in terms of CEO modes as

W (4) = −
1

2h̄

∑

P

∫ ∫

dR1dR2

|r1 − r′
1||r2 − r′

2|

∑

αα′

sα′ µ̃−α(r1)µα(r2)µ−α′(r′
1)µα′(r′

2)

(Ωα + Ωα′)

−
1

6h̄2

∑

P

∫ ∫ ∫

dR1dR2dR3

|r1 − r′
1||r2 − r′

2||r3 − r′
3|

n̄b(r
′
3)

×
∑

αα′

sαsα′µα(r3)µα′(r′
1)µ−α′(r′

2)

ΩαΩα′

[n̄a(r1)µα(r2) + n̄a(r2)µα(r1)] . (55)

Expansion of higher order terms in CEO modes are given in [22]. The GRF
therefore provide a compact and complete description of intermolecular in-
teractions. Both response and correlation functions can be described in terms
of Liouville space pathways and can thus be treated along the same footing.
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