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ABSTRACT: Electromagnetic fields with complex spatial variation routinely arise in Nature. We study E

the response of a small molecule to monochromatic fields of arbitrary three-dimensional geometry. First,
we consider the allowed configurations of the fields and field gradients at a single point in space. Many
configurations cannot be generated from a single plane wave, regardless of polarization, but any allowed

’A

configuration can be generated by superposition of multiple plane waves. There is no local configuration of
the fields and gradients that requires near-field effects. Second, we derive a set of local electromagnetic
quantities, each of which couples to a particular multipole transition. These quantities are small or zero in I

plane waves, but can be large in regions of certain superpositions of plane waves. Our findings provide a
systematic framework for designing far-field and near-field experiments to drive multipole transitions. The
proposed experiments provide information on molecular structure that is inaccessible to other spectro-

<

scopic techniques and open the possibility for new types of optical control of molecules.

1. INTRODUCTION

Propagating plane waves comprise only a minute fraction of all
solutions to Maxwell's equations. Fields with sinusoidal time
dependence but with more complex spatial variation routinely
arise in the context of multiple-wave interference and optical near
fields. These variously shaped fields can excite molecular multi-
pole transitions that are tickled weakly, if at all, by far-field plane
waves. Here, we study the geometry of nonplane-wave electro-
magnetic fields and the linear interaction of these fields with small
molecules. For each type of multipole transition, we present a local
electromagnetic quantity that determines the strength of the
coupling to that transition. We propose simple field configura-
tions and spectroscopic techniques that selectively probe parti-
cular multipole transitions.

For most molecules, far-field plane waves couple weakly to
molecular multipole transitions beyond electric dipole, and in
some cases, the coupling is identically zero. Weak coupling beyond
electric dipole arises because the wavelength of light is typically
much larger than molecular dimensions. Higher multipole transi-
tions are excited more weakly than electric dipole by powers of
a/A, where a is the molecular size and A is the wavelength. In
addition, excitation of some multipole transitions by plane waves
is identically zero due to the definite relations among electric fields,
electric field gradients, and magnetic fields that arise in all plane
waves. These transitions vanish for plane waves, regardless of the
wavelength, polarization, or degree of orientation of the molecules.

Steeply varying fields are widespread in Nature. They play a
particularly important role in intermolecular interactions because
the electromagnetic field due to one molecule may be highly
nonuniform over the extent of its neighbor. These field gradients
couple to multipole transitions beyond electric dipole that are
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important in mediating intermolecular energy transfer,' inter-
molecular forces,” and chemical reactions.® To understand these
processes,” one would like to explore the response of a test
molecule to a variety of time-harmonic electric fields, magnetic
fields, and field gradients.

Metallic nanostructures, photonic crystals, and metamaterials
also generate local fields that are highly contorted. Surface-
enhanced optical effects are well-known for molecules near metal
surfaces®” and include enhanced fluorescence,® Raman scattering9
two-photon excitation,'® and photochemistry."" These phenom-
ena are typically interpreted in terms of enhancement of the
electric field strength alone,6 but the relative magnitude and
direction of electric and magnetic fields and their gradients near a
nanostructure need not correspond to their values in a plane
wave and can thereby violate far-field selection rules. For instance, it
was recently predicted that magnetic nanostructures can drama-
tically enhance the rate of intersystem crossing in nearby molecules
through interaction of magnetic gradients with a magnetic
quadrupole transition in a radical pair.'”> Nanostructures can
sculpt the fields to bring “forbidden” transitions to light.

Thus, it is interesting to study the response of molecules to
nonplane-wave electromagnetic fields. In section 2, we study the
possible local geometries of monochromatic fields allowed by
Maxwell's equations. There are many valid field configurations
that cannot be produced by a monochromatic plane wave. This
distinction between the space of possible fields and the space of
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plane wave fields is an important aspect of spectroscopy that has
not received adequate attention.

We show that any valid configuration of electric and magnetic
fields and field gradients can be created at discrete points in space
by superposition of up to 32 linearly polarized monochromatic
plane waves. Thus, although it may be convenient to use nano-
structures or near-field optics to generate certain field configura-
tions, these tools are not strictly necessary.

Next we ask: What attributes of the field should one calculate
to determine the rate of excitation of a particular multipole
transition? Our group previously considered this question in the
context of randomly oriented chiral molecules and circular
dichroism. We introduced a time-even pseudoscalar that mea-
sures the local handedness of the electric and magnetic fields:

=~ E.VXxE+-—B-VxB (1)
2 2o

This “optical chirality” determines the dissymmetry in the rate of

excitation of a small chiral molecule."

In section 3, we study how other bilinear field objects couple
to other kinds of multipole transitions. In section 3.2, we treat the
coupling of electric field gradients to electric dipole—electric
quadrupole (E1—E2) transitions. These transitions average to
zero for randomly oriented molecules, regardless of the field
geometry. Near an interface, however, molecules may have a
uniaxial orientation, leading to several interface-selective signals
for appropriately sculpted fields.

In Section 3.3, we treat electric dipole—magnetic dipole (E1—
M1) transitions. Upon orientational averaging, these transitions
survive only for chiral molecules and chiral fields. For uniaxially
oriented molecules, however, E1—MI transitions combine with
E1—E2 transitions to give an interface-selective signal for
appropriately sculpted fields. Remarkably, many of these transi-
tions are completely invisible to plane waves but become visible
in a standing wave.

In sections 3.4—3.6, we construct simple standing wave fields
that selectively excite E1—E2 and E1—M1 transitions in loca-
lized regions of space. We propose a simple experiment to test
these predictions.

In section 4, we consider magnetic circular dichroism (MCD)
as a perturbation to the electric dipole transition. We derive the
electromagnetic quantity that couples to MCD and propose an
experiment in which a focused beam of linearly polarized light
probes the same molecular quantities that are usually probed
with circularly polarized light in MCD.

In 1964, Lipkin introduced 10 conserved electromagnetic
quantities that are quadratic in the fields, which he called the
“Zilch”."* He and subse%uent workers failed to find any physical
meaning for the Zilch.'>® One of these, termed Z°%, is the same
as the optical chirality we previously introduced. In section S, we
show that six of the remaining Lipkin terms are the EM quantities
that couple to E1—MI1 transitions, and the other three couple to
molecules in DC magnetic fields. We present a protocol for
generating an arbitrary number of conserved Lipkin-like quantities.

2. ALLOWABLE MONOCHROMATIC FIELDS

How much freedom do Maxwell's equations give us to sculpt
electromagnetic fields? A small molecule is only sensitive to local
fields and field gradients, so we restrict attention to these aspects
of the field about a fixed point in space, chosen to lie at the origin
r=0. A related question is: Can we generate any allowed field
configuration using combinations of plane waves, or are there

[l /)
]

Figure 1. Arbitrary electric and magnetic ellipses at a single point in
space. This configuration cannot occur in a plane wave, but can occurin a
combination of four linearly polarized standing waves.

configurations that arise only in optical near fields? We show,
perhaps contrary to intuition, that any time-harmonic local field
configuration can be generated by superposition of propagating
plane waves.

The most general monochromatic electric field follows an
elliptical trajectory, with arbitrary orientation, amplitude, ellip-
ticity, and phase. It is mathematically convenient to describe this
configuration by the real part of
B =F"e o 2)
where Eand E® are complex vectors. We use symbols without a
tilde to represent physical quantities, which are the real parts of
the corresponding complex terms. A single propagating plane
wave can generate any desired electric field ellipse; one simply
chooses the polarization, amplitude, and direction of propagation
of the wave.

Within the electric point—dipole approximation, the local
electric field is the only quantity needed to describe the interac-
tion of light with matter. In this case, plane waves span the space
of relevant fields, so the distinction between plane waves and
other fields is moot. However, if one considers multipole
transitions beyond electric dipole, then the magnetic field and
the electric and magnetic field gradients become important. In
this case, we find allowable field configurations that cannot be
produced by a single plane wave.

One can imagine a monochromatic field configuration that at a
single point consists of an electric field ellipse and a magnetic
field ellipse, each with arbitrary amplitude, ellipticity, orientation,
and phase (Figure 1). This configuration is consistent with
Maxwell's equations, but unless E and B are always perpendi-
cular, it does not occur in a plane wave. First, we show by explicit
construction how to generate this configuration by combination
of multiple standing waves. Then we use an algebraic approach to
show that any electric and magnetic field gradients allowed by
Maxwell's equations can be superimposed on these ellipses by
addition of more plane waves.

Consider a standing wave composed of counterpropagating
plane waves, linearly polarized in the same plane. At the electric
antinodes, the magnetic field is zero, and vice versa. By over-
lapping the electric antinodes of two such standing waves, with
different linear polarizations, phases, and propagation axes, one
creates an arbitrary electric field ellipse at a point where the
magnetic field is zero. By combining the magnetic antinodes of
two more standing waves in a similar manner, one creates an
arbitrary magnetic ellipse where the electric field is zero. Finally,
one superimposes the electric ellipse with the magnetic ellipse
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to achieve the arbitrary field configuration shown in Figure 1.
We describe the state of the field in Figure 1 by a six-element
complex vector, (E, B).

Now we consider the electric and magnetic field gradients.
The electric gradient, VE, has nine components, Elgy, indicating
the derivative of Egin the 7y direction. The magnetic gradient also
has nine components. Once we have determined the vector (E
B), Maxwell's equations set the divergence and curl of E and B,
leaving us with five independent components for Eg, and five for
Bg,. Thus, we have six independent components for the fields
and 10 for the gradients. We describe the complete field geometry at
a single point by a vector, Q = (E, B, VE, VB), with 16
independent complex components.

Now the question is: Can any value of Q be created by
superposition of linearly polarized plane waves? Every plane
wave contributes to E, B, VE, and VB, and at a single point in
space, the wave can be represented as a vector in the space of Q.
If we can find a set of plane waves that span the space of Q, then
the problem is solved.

To construct a basis set for Q , we restrict attention to linearly
polarized, monochromatic plane waves, each with fixed wavevector
and polarization, but variable amplitude. These are of the form

E = E9 exp(ik-r — iwt) exp(i¢)

Egy = Sk, exp(ik-r — iot) exp(ig))

Bg, = iBéO)ky exp(ik-r —iwt) exp(ip) (3)

with E”) and k real. We have the constraints
E¥.k =0 (4)
k| = ko (8)

For each plane wave, we evaluate its contribution to Q_at the
origin. In Table 1 of Appendix 1, we list 16 monochromatic plane
waves with ¢ = 0 which span the real part of Q The same 16
waves with ¢ = 77/2 span the imaginary part of Q.

Thus, it is possible, using only plane waves, to achieve an
arbitrary configuration of EM fields and gradients at a point in
space. Nanostructures and near-field optics may offer practical
advantages for the creation of these fields, but these tools are not
strictly necessary. We now consider the response of a molecule to

a field with an arbitrary value of Q.

3. MOLECULAR MULTIPOLE TRANSITIONS

3.1. Induced Oscillating Molecular Multipoles. A molecule
subjected to a time-harmonic EM field develops time-harmonic
charge and current distributions, which may be described by a
multipole expansion,'”

flo = OapBy+ %Auﬁyﬁﬁy + Gogs By

Oop = ayopEy + ..

fa = ZupBp+ - (6)
where Q, 3, y are Cartesian indices, and /i, é, m are the oscillating
electric dipole, electric quadrupole, and magnetic dipole, respectively.

The quantity Qg is the dynamic electric dipole polarizability, Aaﬁy
and 4,4 are the mixed electric dipole—electric quadrupole polariz-
abilities, and Gop and Zop are the mixed electric dipole—magnetic
dipole analogues. We use the Einstein summation convention in
which repeated Cartesian indices are summed.

The transition matrix elements and the line shape functions
are each, in general, complex. The polarizability tensors, such as
Aaﬁy and G, are products of matrix elements and lineshapes, so
these are generally complex, too. In the absence of a DC
magnetic field, the dynamics respect time-reversal symmetry,
and all molecular eigenfunctions can be chosen to be real.'* In
this case, electric dipole and electric quadrupole transition matrix
elements are purely real, and magnetic dipole transition matrix
elements are purely imaginary. From the perturbation theory
expressions for the molecular response tensors, one can show
that

A = dyop = A'apy +id"ap,

—8up = Gap+iG g (7)

afy
Gop =

where A'uﬁy, A/'aﬂy, G’Uﬂ, and G”qﬁ are real frequency-depen-
dent functions. Note that we use a different notation from
Barron'” because we are restricting attention to conditions when
the molecular eigenfunctions can be chosen to be real.

The induced multipoles absorb energy from the fields at an
average rate

. 1 : .
r = <Emua+g}3aﬁeaﬁ —I—Buma+...> (8)

t

where (), indicates an average over time. Substitution of eq 6 into
eq 8 leads to an expression for the rate of absorption in terms of
molecular properties and local EM fields. This expression con-
tains many terms, each of which is a product of a molecular tensor
component and two field quantities.

Each term is responsible for a spectroscopic observable. We
classify these observables by the field components that contri-
bute. For instance, if we express the electric field as in eq 2, then
the first term in the expansion is

rEl —E1 — a)(l”aﬁE((f)Eg)) (9)

which is responsible for the pure electric dipole absorption,
which usually dominates. We neglect terms of order M2 and
higher because these are negligibly small for most molecules.

In nonplane wave geometries, the relative strengths of the field
quantities can be adjusted to enhance the contribution of particular
molecular terms. This flexibility enables enhanced spectroscopy
with sculpted fields and, in some cases, gives rise to observables
not probed by plane waves.

3.2. Electric Dipole—Electric Quadrupole (E1—E2) Excita-
tion. Two effects contribute to E1—E2 transitions: (1) interac-
tion of the electric field with dipole moments induced by the field
gradient and (2) interaction of the field gradient with quadrupole
moments induced by the electric field. We now treat each in turn.

The complex fields at the origin Eg = Eéo)e_iwt, Eﬁy = Eg;,)e_iwt
can be expressed as

- i = i

E,=Eg+ Eg Egy =Egy + Epy (10)
where Eg and Eg,, are the real oscillating field components. The
electric dipole moment induced by an electric field gradient is
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given by combining eqs 6 and 10:
oy = %(A/aﬁy +id" o) (Eﬂy +;Eﬁy> (11)
The time-dependent absorption rate due to this interaction is
Bofty = %AIMVEGEM +%A”aﬂ7E0tEﬂy (12)

where 4o = Re(fl ) is the real component of the complex electric
dipole moment, and we used the fact that for time-harmonic
fields, £, = —w’Ep,

Similarly, the molecular electric quadrupole moment induced
by the electric field is

By = (Aapy + ihagy) (EQ+CI)EQ> (13)

where we have used the fact that Aaﬁy = dyqp. The time-
dependent absorption rate due to this interaction is

1 . 1 . w
gEﬁyeﬂy = gA,“ﬁVEaEﬁV +§A”<1/3VE(XE/3V (14)

The total absorption rate is the sum of eqs 12 and 14. The
electromagnetic quantity that couples to A” g, is
2w
3 <E(1E/>’7>t (15)

and the one that couples to A’qp,, is

R 1/4
3 (Baklpy + EaEgy), = §<at( a ﬁy)>t (16)

which vanishes. Thus, the rate of the E1—E2 transition is

2w

To-pm = ?A”uﬁy@a]sﬁy)t (17)

Terms that couple to A, with all three 1nd1ces distinct

give rise to optical activity of oriented molecules."” The average

of the third-rank tensor Aaﬁy over all molecular orienta-
tions is

<Auﬁy > Q

where &4, is the third-rank 1sotrop1c tensor The tensor com-
ponents of A are related by Amﬁy uyﬁ) 7 whence EapyAapy =0.
Therefore, the E1—E2 absorption vanishes for unoriented
molecules, regardless of the geometry of the EM field.

3.3. Electric Dipole—Magnetic Dipole (E1—M1) Transition.
Two effects also contribute to E1—MI transitions: (1) interac-
tion of the electric field with electric dipole moments induced by
the magnetic field and (2) interaction of the magnetic field with
magnetic dipole moments induced by the electric field. We now
treat each in turn.

The - magnetic | field induces an electric dipole moment accord-
ing to il = GopBg. By following the same algebra used to derive
eq 12, we find that this term contributes a time-dependent
absorption rate

Eafty = GogEaBy+wG"4pEaBg (19)

1 ~ -
- g(saﬁyAaﬁy>5 (18)

The electric field induces a magnetic dipole moment according
to mg = ggaEq. The absorption rate due to this interaction is

Blgﬁ’lﬂ = — G/QﬂEaBﬂ — wG”uﬂEQBﬁ (20)

where we have used the fact that éaﬂ = —gup- The ratesin eqs 19
and 20 are summed to give the total rate of E1I—M1 absorption

Igi-m1 = Gl(xﬁ <E0LB/3 - EocBﬁ>t (21)

Thus, the quantity <EaB/3 - EaB/g>t determines the rate at which
E1—M1 transitions are excited in oriented molecules.

In the case of unoriented molecules, we take the isotropic
average and use (G qp)e = (1/3)(G'qa)1, where 1 is the 3-by-3
identity matrix. This quantity is nonzero only for chiral mole-
cules. Application of Maxwell's equations in free space to the
quantity (EqBy, — EqBq): shows that this object is proportional
to optical chirality and is responsible for chiral dissymmetry in
the excitation of isotropic molecules.

Higher multipole transitions, such as E1—M2, E2—MI, and
M1—MI can be calculated in a similar manner. However the
molecular response tensors for these transitions tend to be very
small, so we deem experimental observation unlikely in the near
term.

3.4. Multipole Transitions in Linearly Polarized Standing
Waves. Here, we demonstrate that a linearly polarized standing
wave excites molecular transitions that are invisible to traveling
waves. These “achiral multipole transitions” are detectable only
for molecules that are uniaxially oriented and lie within a plane of
subwavelength thickness. This geometry is common at liquid
interfaces, so we propose that achiral multipole transitions can be
used for surface-sensitive spectroscopy.

Consider a standing wave composed of two waves counter-
propagating along z and polarized along x. We allow the two
waves to have different amplitudes, Ey and E,.

E( t) = Ege, exp(i(kz — wt))

— E'ge, exp(i( — kz — wt))
B(z,t) = %éy exp(i(kz — wt)) +?€‘y exp(i( —kz— wt))

(22)

The only contribution to E1—E2 absorption is from E,E,., and the
only contribution to E1—M1 absorption is from ExBy E,B,.
The relevant field objects are

w
E1-El: (E*), = S[EOZ +E'y* —2EE cos(Zkz)}

(23)

2 k
achiral E1—E2 : %(E,‘Ex,jt = 6U?EOE'O sin(2kz) (24)

achiral E1— M1 : <ExBy — ExBy>t
= —kEoE') sin(2kz) (25)

Equation 23 determines the spatial dependence of E1—El
absorption, which is the usual quantity measured in a standing
wave. Equations 24 and 25 determine the rates of achiral multi-
pole transitions and have the remarkable property that they
vanish for a plane wave (setting E, or E/y to zero). Achiral
multipole transitions are invisible to a single linearly polarized
plane wave. We show below that these transitions are also
invisible to circularly polarized light, supporting our conten-
tion that standing waves can excite transitions that propagating
waves cannot.
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Figure 2. Schematic of an experiment to probe achiral E1—E2 and
E1—MI transitions in a liquid. A transparent barrier of thickness (n/2 +
1/4)A separates two compartments of liquid and is exposed to a standing
wave (for clarity, we draw a slab of thickness 4/4, though this is
mechanically implausible). The standing wave is moved perpendicular
to the plane of the slab. Molecules may have larger (or smaller)
concentration near the interface than in bulk and may have orientational
order near the interface. Only E1—E2 and E1—MI excitation of the
surface-oriented molecules oscillates with translation of the standing
wave; the total rate of E1—E1 excitation does not vary.

Substitution of eqs 24 and 25 into the overall rate of absorp-
tion gives
oA e
3

I = FEI —E1 + kEoE/() SID(ZkZ) < Glxy) (26)
The sin(2kz) dependence of the achiral multipole transitions
combines with the cos(2kz) dependence of the E1—E1 transi-
tion to create a slight phase shift in the standing wave absorption
pattern relative to what would be expected for pure electric
dipole absorption.

The consequences of eq 26 vary depending on the degree of
orientational order of the molecules. Equation 26 applies to
perfectly oriented molecules, such as might be found in a crystal.
Under isotropic averaging, as in a liquid, <Aaﬂy>g =0, and the off-
diagonal components of Gyg average to zero, even for chiral
molecules. Thus, these transitions are undetectable in bulk liquid.
Near a liquid interface, however, molecules may adopt a uniaxial
orientation. A DC electric field can orient molecules, too. If the
orientation axis coincides with the optical z-axis, then we average
eq 26 about z, to get

1 w
I = FEI —E1 + E kE()E/() sm(2kz) (g (A”xxz +AN},},Z>

-Gyt G’yx> (27)

3.5. Experiment To Detect Achiral Multipole Transitions.
We propose a conceptually simple experiment to probe the
achiral multipole transitions of molecules at a liquid interface. A
transparent slab of thickness (n/2 + 1/4)A, where n is an integer,
is immersed in a liquid. The liquid molecules near the surface are
oriented by interaction with the slab, so the orientation is in the
opposite sense on the two faces. A standing wave is generated
perpendicular to the slab. The absorption is monitored (for
instance, by fluorescence) as the standing wave is translated
along the optic axis (Figure 2).

The total fluorescence from the bulk is independent of the
position of the standing wave. If there is an enrichment or
depletion of molecules near the surfaces of the slab, the periodic

modulation in the E1—EI fluorescence from one face is canceled
by an out-of-phase modulation in the E1—E1 fluorescence from
the opposite face (a consequence of the choice of slab thickness).
But if the molecules are oriented by interaction with the faces of
the slab, then both the orientation and the direction of the
electric field gradient are opposite on the two faces. The achiral
multipole transitions from the two phases thereby have in phase
periodic modulation. One records the total fluorescence as a
function of time, and the amplitude of the oscillatory component
indicates the strength of these transitions. One can also conceive
avariant of this experiment in which the liquid forms a thin film in
a channel of thickness (n/2 + 1/4)A.

3.6. Multipole Transitions in Circularly Polarized Standing
Waves. Standing waves with circular polarization also excite certain
multipole transitions with greater selectivity than is obtained from
circularly polarized propagating plane waves. Consider a standing
wave consisting of counterpropagating left- and right-circularly
polarized waves, with possibly different amplitudes:

Bzt = %(ex +i8,) expli(ke — 1))
£y

- ﬁ(éx +iey) exp(i( — kz — wt))

Bz = %(éy — i2,) expli(ke — 1))
+E—/°(ey — iey) exp(i( — kz — wt)) (28)

2

We call this the 6o~ configuration. The standing wave gen-
erates the following EM quantities, which couple to multipole
transitions:

E1—El: o{E|?), = %{E& + E'y> = 2BoEy cos(2kz)
(29)
2 2
chiral E1— E2 : ?‘” (EE.), = — ?‘” (EE,.);
wk
= — ?(E()Z - E/oz) (30)
2 2
achiral E1— E2 : Tw (EE.), = ?w (E,E,.),
wk /
=3 sin(2kz) EoE'g (31)
achiral EI=M1: (E.B,—EB,), = —(E,B,—E,B,)
= —kEoE'j sin(2kz) (32)
chiral EI=M1 : (E.B,—E,B.), = (E,B, —E,B,),
(E02 — E’OZ) k
= -7 (33)

2

As we found with linear polarization, the achiral E1—E2 and
E1—MI1 transitions are not excited by a single plane wave
(setting Eq or E'y to zero), but are found only in the standing
wave. These transitions are truly invisible to plane-wave spec-
troscopy.
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We refer to terms containing E,E,, and E,E,; as chiral because
these are responsible for optical activity of oriented chiral
molecules. Our group previously showed that there exist config-
urations of the EM field in which the ratio of optical chirality to
electric energy density is enhanced relative to the ratio found in
circularly polarized light (CPL)." It is then interesting to ask
whether the same fields show an enhancement in the relative
strength of the chiral E1—E2 terms.

The chiral selectivity of a light—matter interaction is described
by the dissymmetry factor, defined as the fractional difference in
rate of excitation between two mirror-image configurations of the
fields (or the molecule).

2t —=T7)
$=TreT)

(34)

We previously considered isotropic chiral molecules for which
the only chiral transition is E1—M1. We found that in a near-
node ofa 0o~ standing wave,

Eo+Eg

N 35
B, — (35)

8max — £CPL

As Ey — E/, this enhancement factor can become very large.

Comparison of eqs 30 and 33 shows that both equations have
the same dependence on E, and Ej and that both equations are
independent of position. Thus, the dissymmetry factor for
E1—E2 transitions in oriented chiral moleculesina 0™ ¢ standing
wave undergoes the same enhancement as for E1—M1 transi-
tions in unoriented molecules. In this regard, the fields in regions
near the electric minima are truly “superchiral” for the 070~
configuration.

4. MAGNETIC CIRCULAR DICHROISM

Just as the optical chirality, C, determines the local strength
of circular dichroism, we expect another EM quantity, =, to
determine the local strength of magnetic CD (MCD). Although
Cis a time-even pseudoscalar, we expect = to be a time-odd axial
vector.

MCD arises through a ma§netic modification to the electric
dipole polarizability tensor.”*” In the presence of a DC magnetic
field, the additional electric field-induced dipole moment becomes

~ "

o ‘ i
By = Qop, EpBy = ((llaﬁy +laaﬂy) (E/g +5Eﬂ>B7 (36)

where Og, is the perturbation to the electric polarizability
tensor by the static external field B,. The term proportional to
o o5y is responsible for MCD.'” The magnetic field-dependent
contribution to the rate of absorption is

Eolty, = alaﬂyE&EﬂBy (37)

As with regular absorption, MCD arises through a purely E1—E1
transition in the sense that only the oscillating electric fields of
the incident light need to be considered. The static magnetic field
cannot contribute to absorption. However, the tensor duﬁy
contains an antisymmetric component with respect to exchange
of the first two indices, in contrast to the usual polarizability, daﬁ,
which is symmetric. This antisymmetry explains why the real
part of Oy, determines MCD, while the imaginary part of Qg
determines regular absorption.

~
~
e
&
»

I'd
N -~

Figure 3. Magnetic circular dichroism in a focused linearly polarized
beam. Near the focus, the electric field describes an ellipse in the x—z
plane. A magnetic field along the y axis is predicted to induce a
differential absorption across the beam.

If we consider randomly oriented molecules, then the relevant
isotropically averaged field quantity is

eapyEoaEpB, = (E xE)-B (38)

Equation 38 implies that Z = E x E is the quantity that couples to
MCD. This quantity is maximized when E and E are orthogonal;
that is, when the electric field describes a circle. The optical
frequency magnetic field and electric and magnetic gradients are
irrelevant for MCD. Thus, MCD is maximized for circularly
polarized light, and we do not expect to find sculpted fields with
enhanced MCD. This finding contrasts with the enhancements
predicted for chiral CD and highlights the different physical
origins of these two effects.

The expression for Z captures the physical picture of the
electric field vector rotating about an axis, which is often
associated with circular polarization. However, circular polariza-
tion is not necessary for E to describe a circle. Consider a
Gaussian beam coming to a focus, with linear polarization in x,
propagatinglin z. The electric field is given by the well-known
expression.

E, =

2 2
Wwo —-r . ) r
ikz — ik

z
E—e —_— —+iarctan —_—
W) | Wi (2) ( ZR ) <>
2z 1+

(39)

where wy is the beam waist, zg = 7Twy>/A is the Rayleigh range,
and w(z) = wo(1 + (z/zR)z)l/z. There is also a comzponent of the
electric field along z. To first order in A/w, E, is®
i0E,
= - 40
© kox (40)
Near the focus, the electric field rotates in the x—z plane,
which generates a nonzero time average of E X E. At the beam
waist, z = 0, we find

. —2wEy? — 212
(E xXE), = (0: kw 20 xeXp< 2r )r()) (41)
Wo Wo

Therefore, we predict that a DC magnetic field in the y direction
gives rise to differential absorption across the beam cross section.
This signal has the same origin as magnetic CD.

We propose an experiment to demonstrate this effect via
fluorescence-detected MCD (FDMCD), as illustrated in Figure 3.
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Table 1. Sixteen Plane Waves with Phase ¢ = 0, Which Span the Real Part of the Space of Possible Electromagnetic Fields and Field

Gradients
k E B
(0,1,0) (E,, 0,0) (0,0, —E,)
(0,0,1) (E,, 0,0) (0, E,, 0)
(1,0,0) (0, E5, 0) (0,0, E3)
(0,0,1) (0, E4 0) (—E,, 0,0)
(1,0,0) (0,0, Es) (0, —Es, 0)
(0,1,0) (0,0, Eg) (Eg 0, 0)
(0,0, —1) (E,, 0,0) (0, —E,, 0)
(~1,0,0) (0, Eg, 0) (0,0, —Eg)
(0, —1,0) (0,0, Ey) (—Es, 0,0)
(1/v/2,0, —1/+/2) (Er0, 0, E1o) (0, —v/2E,, 0)
(0, 1/+/2, —=1/4/2) (0, 1y, Evy) (V2E,,, 0,0)
(O: -1, 0) (E12: 0, 0) (0; 0, EIZ)
(O’ 0, 71) (0: Ey3 O) (El3r 0, 0)
(_17 0, 0) (0; 0, E14) (0; Eis 0)
(1/v/2,0,—(1/v/2)) (0, Eys, 0) (E1s/v/2,0, E1s/V2)
(0, 1/3/2, —(1/v/2)) (Es 0, 0) (0, —Ei6/v2, —E15/v2)

(BN S RN E e Ey) (Bsyy B,z Bz By Byy)
(Ey, 0,0,0,0) (0,0,0,0,0)
(0,0,0,0,0) (0, E,, 0,0, 0)
(0,0,0,0,0) (0,0, E5, 0, 0)
(0, E4, 0,0, 0) (0,0,0,0,0)
(0,0, Es, 0, 0) (0,0,0,0,0)
(0,0,0,0,0) (E¢ 0,0,0,0)
(0,0,0,0,0) (0, E, 0,0, 0)
(0,0,0,0,0) (0,0, Eg, 0, 0)
(0,0,0,0,0) (Ey, 0,0,0,0)
(0,0, E1o/~/2, E1o/+/2, 0) (0, Ey0, 0, 0, 0)
(0, —E,1/¥/2, 0,0, E;,/v/2) (Ey1, 0,0,0,0)
(=Ey», 0,0, 0,0) (0,0,0,0,0)
(0, —E13, 0, 0, 0) (0,0,0,0,0)
(0,0, —Eys, 0, 0) (0,0,0,0,0)

(0, —E15/+/2,0,0,0)
(Ei6/v/2,0,0,0,0)

(0) 0; E15/2f E15/27 0)
(0, E16/2, 0,0, —E;6/2)

A thin film of fluorescent material is placed in the focus of a
linearly polarized beam. An external magnetic field is applied
transverse to the beam and the polarization. The small FDMCD
signal is superimposed on the much larger E1—E1 fluorescence,
so the FDMCD appears as a slight shift along the x-axis of the
peak position of the fluorescence. By modulating the magnetic
field, this peak is made to oscillate along x, leading to a
fluorescence signal that can be detected with a spatially resolved
detector and a lock-in amplifier.

5. RELATION TO THE LIPKIN ZILCH

In 1964, Lipkin introduced 10 new conserved electromagnetic
quantities, but did not find a physical interpretation.'* We recently
showed that one of these terms, Z°* is the same as our optical
chirality, C."* Here, we show that the remaining 9 terms are linear
combinations of quantities that we derived above.

Consider six of Lipkin's terms given by the off-diagonal
elements of

7% = 9p[E-V x E4+H-V x HJ
—Eo(V xE); —Eg(V x E),

—Ho(V x H); — Hp(V x H),, (42)
Each of the three off-diagonal terms in zh0 separates into two
terms of the form

—Eq(V x E); —Hg(V x H), (43)
Using Gaussian units with ¢ = 1 as used in Lipkin's paper, and
applying Maxwell's equations in free space, we have

EyBg — EoqBs — —Eo(V X E); —Hp(V x H),,  (44)
Therefore, each off-diagonal element 7% is a linear combina-
tion of the EM quantities that drive E1—M]1 transitions.
There are three additional conserved quantities from Lipkin of
the form . .
(ExE+H xH), (45)
These are components of the flux of optical chirality, C, and are
also related to MCD. We showed above that the quantity E X E

determines the extent of MCD. If we also consider the perturba-
tion to the magnetic polarizability by a magnetic field, then an
identical procedure would identify H x H as the relevant
quantity for magnetic dipole transitions. Magnetic dipole transi-
tions are normally much weaker than electric dipole transitions
and can be neglected.

Conservation in vacuum for each of the Lipkin terms is a
special case of a general conservation law for any quantity of the
form

Y = AB—BA (46)
where A and B are components of E and B acted on by any linear
operator, such as time or spatial derivative. We define the
corresponding flux,

® = —AVB+BVA (47)
and immediately obtain a conservation law in free space,
Y+V-® =0 (48)

This procedure gives an infinite number of quantities that are
conserved in vacuum. These quantities are likely to have the physical
interpretation of being the couplings to molecular polarizability
tensor components.

6. DISCUSSION

We showed that there exist many configurations of the
electromagnetic fields and field gradients that cannot be gener-
ated from a single plane wave, but that any local configuration of
the field can be generated from a combination of plane waves.
There exist achiral multipole transitions in oriented molecules
that are completely invisible to plane waves but that are detectable in
suitably designed optical standing waves. Just as circular dichro-
ism measurements probe aspects of molecular structure that are
not detected by conventional absorption, we expect these achiral
multipole transitions also to hold new molecular information.
We also found that a tightly focused beam of linearly polarized
light in a magnetic field probes the molecular properties usually
probed by magnetic circular dichroism. Here, we considered only
linear optics, in which the rate of excitation is quadratic in the
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fields. The field objects we considered here can appear in greater
number when one considers nonlinear optics, and interesting effects
may arise in that domain as well.**

B APPENDIX 1

Plane Wave Basis for Local Field Geometries. At a single
point in space, one requires 16 independent complex quantities to
describe the electric field, magnetic field, electric gradients, and
magnetic gradients for a time-harmonic solution to Maxwell's
equations. These quantities can be arranged in a 16-dimensional
vector, Q exp (—iwt), where Q is complex. We choose to
construct a basis for Q from plane waves of the form E©
exp(ik - r — iwt) exp (i), for which we can choose the phase ¢ to
give the real and imaginary parts independently. Therefore, it is
sufficient to show that one can construct the real part of Q from
plane waves. The imaginary part follows similarly.

In the following table, we list 16 plane waves and their associated
vectors in the space of Q , calculated at the origin r = 0. A similar
set with ¢ = 7/2 completes the basis for all possible EM fields and
gradients at r = 0. These vectors can be verified to be linearly
independent by checking that the determinant of the 16 by 16
matrix is nonzero. Therefore, these vectors form a basis for
the vector space. Of course, this choice of basis is not unique. We
have chosen units of time and distance such that ky = ¢ = 1.
We give only five of the gradients of E and B; the others are
determined from Maxwell's equations.
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