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Abstract. Given a stationary time series X and another stationary time series Y (with a 
different power spectral density), we describe an algorithm for constructing a stationary 
time series Z that contains exactly the same values as X permuted in an order such that 
the power spectral density of Z closely resembles that of Y. We call this method spectral 
mimicry. We prove (under certain restrictions) that, if the univariate cumulative distribution 
function (CDF) of X is identical to the CDF of Y, then the power spectral density of Z 
equals the power spectral density of Y. We also show, for a class of examples, that when the 
CDFs of X and Y differ modestly, the power spectral density of Z closely approximates the 
power spectral density of Y. The algorithm, developed to design an experiment in microbial 
population dynamics, has a variety of other applications. 

1. Introduction 

Suppose that we are given two scalar-valued time series X and Y of equal fi- 

nite length, i.e., two samples of the same finite duration from different stationary 

stochastic processes on the natural numbers. (For an accessible introduction to the 

concepts and terminology of stationary time series, see, e.g., [4, Chapter 47].) We 

describe here a method of constructing a third time series Z that contains exactly 
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the same elements as X permuted so bat  the power spectral density of Z resem- 
bles the power spectral density of g. We call this method spectral mimicry. We 
shall prove (under certain restrictions) that, if the univariate cumulative distribu- 
tion function (CDF) of the stochastic process that generates X is identical to the 
CDF of the stochastic process that generates Y, then the power spectral density of 
Z equals the power spectral density of Y. We also show, for a class of examples, 
that when the CDFs of X and Y differ modestly, the power spectral density of Z 
closely approximates the power spectral density of Y. 

The development of spectral mimicry was motivated by the need to design an ex- 
periment in microbial population dynamics [2]. Ecological theorists have predicted 
that the relative importance of high-frequency versus low-frequency fluctuations 
in environmental features such as temperature will affect the composition and dy- 
namics of ecological communities [6]-[8], [1]. However, the impact of the shape 
of the power spectrum of an environmental parameter on the population dynamics 
of individual species remained to be investigated experimentally. If one popula- 
tion of microbes were grown in an environment where the temperature fluctuated 
like a white noise (i.e., with a power level independent of frequency), and another 
population experienced temperatures that fluctuated like a red noise (Le., with a 
power level that decreases with increasing frequency), how would the population 
dynamics of the microbes be affected? 

The experiment required the construction of two types of times series of tem- 
peratures - -  one type approximating white noise and the other approximating red 
noise - -  which were otherwise as similar as possible. Generating white noise (the 
series X described in the first paragraph) is easily done by sampling from a pseu- 
dorandom number generator. Generating red noise (the series Y of the first para- 
graph) is easily done by generating the simplest nontrivial autoregressive series, a 
Markov-Gaussian process [4, Example 47.7, p. 418] with positive autocorrelation. 
The method of spectral mimicry then makes it possible to generate a red noise 
having exactly the values of X and the power spectral density of Y. We shall prove 
these assertions and give a numerical example. 

2. The method 

We denote time series data of finite positive length T by X = (X(1), X(2) . . . . .  
X(T)), where the elements occur in the order X(1), X(2) . . . . .  up to X(T). We 
denote by {X (t)} the sequence of elements of X without regard to temporal order, 
and by X[1] < X[2] < ..- < X[T] the T order statistics of X, that is, the elements 
of X rearranged in nondecreasing order. For example, X[1] = rain {X(t)} and 
X[T] = max {X(t)}. We use identical notation for the other time series Y and Z. 

We assume that the data X are generated by a stationary sequence of random 
variables with finite mean and variance. We assume that an equally long sequence of 
data Y are generated by another stationary sequence of other random variables with 
finite mean and variance, and that {X(t)} differs from {Y(t)}. We aim to construct 
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a sequence Z that has exactly the same values as X, i.e., {X(t)} = {Z(t)}, such 
that, asymptotically as T becomes large, the time series Z has a power spectrum 
with the same relative shape (i.e., increasing or decreasing with frequency) as that 
of  Y. 

To achieve this, we construct Z from Y by replacing each element of  Y by the 
corresponding order statistic of X. That is, if  Y(t) = Y[s], we define Z(t) = X Is], 
for t = 1 . . . . .  T. It is then obvious that {X(t)} = {Z(t)}, i.e., the elements of  X 
and Z are identical apart from order. 

3. Exact results 

Recall that we use the term stochastic process to refer to a sequence of random 
variables, and the term time series to refer to a data sequence (e.g., one sampled 
from some stochastic process). For any set {.}, let # {.} denote the number of  
elements in the set {.}. Let X( I ) ,  X(2) . . . .  and Y(1), Y(2) . . . .  be time series (of 
infinite length) with the following property: There exist functions F(x) and G(y), 
where F and G are nondecreasing functions defined on the entire real line and 
taking values in [0, 1], such that as T ~ ~ ,  

every rea tx ,  l # { t : l < t < T  and X ( t ) < x } - - > F ( x ) ,  (3.1) for 

for every real y, T # { t : l < t < T  and Y( t )<_y}- -+G(y) .  (3.2) 

Assume that Y (1), Y (2) . . . .  are all distinct and define $1 r , SJ" . . . . .  S r (depend- 
ing on Y(1) . . . . .  Y(T))  so that Y(t) = Y [S T] for t = 1, 2 . . . . .  T (where Y[S] 
are the order statistics for Y). Define zT( t )  for 1 < t < T by zT( t )  = X [stT]. 
(This is the method of  spectral mimicry.) We do not assume that X(1),  X(2) . . . .  
are all distinct. 

When F is a strictly increasing function (i.e., if F (x l )  < F(x2) whenever 
Xl < x2), we define a function F -1 (u) on [0, 1] as follows. First denote by F ( x - )  
and F(x+),  respectively, the limits from the left and the right of  F at x and denote 
by F ( - ~ )  and F ( + c ~ )  the limits as x ~ - c ~  and x --+ + c ~  of  F. Then define 

the (unique) x such that 
F _ l ( u )  F ( x - )  < u < F(x+),  if F ( - c ~ )  < x < F ( + c ~ ) ,  

= (3.3) 
- c ~ ,  i f x  < F ( - ~ ) ,  
+cx~, i f x  > F ( + ~ ) .  

I f  F is continuous as well as strictly increasing (as is the standard normal distri- 
bution function), then F - !  is just the inverse function of F.  

T h e o r e m  1. If F is strictly increasing, then for any fixed to, as T --+ oo, 

zT(to) ~ ~'(to) =- F -1 (G(Y(to))) , (3.4) 

where F -1 is defined by (3.3). 



434 COHEN, NEWMAN, COHEN, PETCHEY, AND GONZALEZ 

Proof. It follows directly from (3.2) (with y = Y(to)) that 

rlim s /r = 0 ( r ( t o ) ) .  (3.5) 

It similarly follows from (3.1) that if u e [0, 1] and Wr takes values in { 1, 2 . . . . .  T }, 
then 

W r / T  ~ u implies X[Wr] --~ F - l ( u )  . (3.6) 

Taking WT = stT0 and combining (3.5) and (3.6) yield (3.4). D 

If X and Y are stationary stochastic processes and (3.1) and (3.2) are valid with 
probability 1 (for which we henceforth write w.p.1), then F(x)  = P {X(t') < x} 
with F ( - e o )  = 0, F (+eo )  = 1 (F  is the univariate CDF of X), and similar 
formulae apply to G and Y. This will be the case for any ergodic stationary process, 
including, for example, Gaussian stochastic processes, where the CDF is a norma! 
distribution function. Now Y(1), Y(2) . . . .  cannot all be distinct w.p.1 unless G is 
continuous, and then w.p.1, G(Y(to))  # O. We then have the following extension 
of Theorem 1, where F need not be strictly increasing. 

Theorem 2. I f  X and Y are stationary stochastic processes such that (3. I )  and 
(3.2) are valid w.p.1, and Y(1), Y(2) . . . .  are distinct w.p.1, then for  any fixed to, 
(3.4) is valid w.p.1, where F -1 is defined for 0 < u < 1 by 

F -1 (u) = sup {x : F(x )  < u} . (3.7) 

I f  in addition, every X (t) is a bounded random variable (i.e., F(a)  = 0 and 
F(b)  = 1 for  some - o o  < a < b < oo), then for  any fixed tl . . . . .  tn, 

lim E ( Z T ( t l ) . . * z T ( t n ) ) = E ( 1 2 ( t l ) ' . . 1 2 ( t n ) )  , (3.8) 
T--~oo 

where 12(0 is defined on the right side of(3.4), and thus for  any fixed t, r 

lira C o v ( z r ( t ) , Z r ( t + z ) ) = C o v ( 1 2 ( t ) , 1 2 ( t + ~ : ) ) .  (3.9) 
T---~ to 

Proof. The derivation of (3.4) in this case requires verifying, analogously to (3.6), 
that if W r / T  ~ G(Y(to))  w.p.1, then X[WT] ~ F - I (G(Y( to ) ) )  w.p.1, with the 
definition (3.7) of F -1, when u ~ (0, 1) is such that F(x)  = u on some nonempty 
interval (xl, x2). This follows from the fact that w.p. 1, no X (t) takes values in such 
an interval. Then (3.8) easily follows from (3.4) because the X(t) 's are bounded, 
and (3.9) follows from the n = 1 and n = 2 cases of (3.8). 

The fight side of (3.9) is the autocovariance of I2, from which its power spectrum 
can be computed. Moreover, (3.7) is a standard definition that guarantees that 
F - I ( U )  has the distribution F, where U is uniform on (0, 1). 

If the hypothesis that Y(1), Y(2) . . . .  all be distinct is dropped, then G may not 
be continuous, and there is a problem in defining S[  because of possible ties in 
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the data. One solution is to break ties "at random," which we define precisely as 
follows. 

Let U(1),  U(2) . . . .  be random variables that are each uniformly distributed on 
(0, 1), mutually independent, and independent of  Y. We will break any ties (and 
hence obtain well-defined values o fS  T and Z T (t)) among, say, Y ( q )  . . . . .  Y(tm) by 
treating Y ( ti ) as less than Y ( tj ) if  Y ( ti ) = Y ( tj ) but U ( ti ) < U ( tj ). Then Theorem 2 

remains valid, with essentially the same proof, if we change the definition of I ~ in 
(3.4) to 

~'(to) = F -1 (G*(Y(to),  U(to))) , 

where G*(y,  u) is defined for real y and u ~ (0, 1) as 

G*(y,  u) = G ( y - )  + u (G(y)  - G ( y - ) ) .  

I f  y is a continuity point of  G, then G*(y, u) = G(y) .  Whether or not G is 
continuous, G*(Y(to),  U(to)) is uniformly distributed on (0, 1). 

Theorem 1 covers the numerical example in Section 5 (if we disregard the 
distinction between pseudorandom and random) because the distribution F of  
values of  X and the distribution G of values of  Y are both normal with mean 0 and 
variance 1, hence F -1 o G is the identity. Thus Zr( t0) ,  as a sequence of  random 
variables indexed by T, converges as T ~ co, w.p.1, to Y(to), so Z r ( t l ) Z r ( t 2 )  
converges almost surely to the corresponding product Y (tl)Y(t2), and so finally 
the stochastic processes Y and Z have the same power spectrum. 

4. Spectral mimicry for a nonlinear function of normal 
random variables 

Numerical results not shown here suggest that the power spectral density of  Z will 
sometimes inherit the redness or blueness (dominance of low or high frequencies, 
respectively) o f  the power spectral density of  Y when F - :  o G is not the identity. 
We demonstrate why that should be so in an example to illustrate computations 
that could be carried out for other cases. 

Let {W(t) : t = 1, 2 . . . .  } be a sequence of independent and identically dis- 
tributed (i.i.d.) normal random variables with mean 0 and variance 1 ("standard" 
normal). For fixed 8 # 0, let X (t) = W ( t ) + ~ ( W ( t ) )  3. Then {X (t) : t = 1, 2 . . . .  } 
is a stationary discrete-time process that is not normally distributed. Using E (W 2 ) 
= 1, E ( W  4) = 3, E ( W  6) = 15, X has variance Var(X(t))  = 1 + 68 + 153 z. 
Because {X (t) : t = 1, 2 . . . .  } are i.i.d., the power spectral density of  X is flat, i.e., 
X is a white noise. 

Suppose that {Y(t) : t = 1, 2 . . . .  } is a stationary discrete-time Markov-Gaus- 
sian process, i.e., for some p G ( - 1 ,  +1)  and for all t > 1, Y(t)  = p Y ( t  - 1) + 
(1 - p2):/ze( t) ,  where e(t)  and Y(1) are i.i.d, standard normal. (In [4, pp. 418-  
419], Kendall and Stuart analyze this case and use this name for it.) Then Y(t)  is 
standard normal for all t. The autocorrelation and autocovariance between Y(t)  
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and Y(t + j )  are pijl. For frequency c~ e [0, Jr], the spectral density of I z is 

w(ot) = E PlJleic~J 1 -- p2 = ( 4 . t )  
j=-oo 1 -- 2p cos ot + p2 " " 

As the frequency ee increases, the spectral density decreases when p > 0 and 
increases when p < 0, corresponding to red noise (dominated by low frequencies) 
and blue noise (dominated by high frequencies), respectively. 

Let Z be constructed by the method of spectral mimicry, replacing each element 
of Y by the corresponding order statistic of X. Then by Theorem 1, for any fixed 
to, as T --> o0, z T  (to) --> F-I(G(Y(to))) .  

Theorem 3. With X, Y, and Z as just defined, and with 8 > O, we have, for any 
integer j,  in the large-sample limit as T ~ oo: 

Z(t)  = Y(t) + 8(Y(t)) 3 , (4.2) 

Cov(Z(t), Z(t  + j))  = (1 + 38)2p Ijl if- 682p 31jt , (4.3) 

and the spectral density of Z is 

~ C o v ( Z ( t ) ,  Z(t  + j ) )e  ica 
w(~) = Vat-(z) j=_ 

1 -- p2 

= (1 4- 38) 2 1 - 2pcosot 4- p2 

1 -- 06 ] 
+6821_2p3cosot_ t_p  6 . J / ( 1 + 6 3 + 1 5 8 2 ) .  (4.4) 

Like the spectral density of Y, this spectral density of Z decreases (with increasing 
frequency or) when p > 0 and increases when p < 0. 

Proof. To prove (4.2), i.e., that Z(t) = H(Y(t ) )  with H(y) = y + 8y 3, we 
must show that F - I ( G ( y ) )  = H(y) or equivalently that G(y) = F( t t (y ) ) .  
Now G(y) = P(Y(t) < y) = P(W(t )  < y) and F(x)  = P(X( t )  < x) = 
P (H( W( t ) )  < x) so that F(H(y) )  = P(H(W( t ) )  < H(y))  = P(W( t )  << y) as 
desired. The last equality uses the fact that for 8 > 0, H is an increasing function. 

Now Cov(Z(t),  Z(t + j ) )  = Cov(Y(t) + ~(Y(t)) 3, Y(t + j )  + ~(Y(t + j))3). 
To simplify the notation, we fix t and j and write A = Y(t), 13 = Y(t + j) .  Then 
A and B are standard normal with Coy(A, B) = ptjt _~ O, and there exists a third 
standard normal random variable C such that A = OB + pC, where 02 + ~2 = 1 
and Coy(B, C) = 0. Hence for any functions f ,  g, Cov(f(B) ,  g(C)) --- 0 and 
Coy( f  (B), g(B) . C) = E ( f ( B ) g ( B ) )  . E(C) - E ( f ( B ) ) E ( g ( B ) ) E ( C )  = O. 
Then 

A -t- 8A 3 = (OB q- qgC) + 8(OB + ~oC) 3 

= OB q-- S03B 3 -b 3802~oB2C + 330~o2BC 2 + [~oC + 8~o3C3| 
k A 
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and 

C o v ( A  + 8A 3, B + 8B 3) 

e ( ( .  + ~ . 3 ) ( 8 ,  + 8o3,3))  + 388~ 2 �9 1 + 3828~ 2 �9 3 

o .  1 + (88 + 883).  3 + ~283.15 + 388~ 2 + 9 ~ 8 ~  ~ 

0 + 680 + 32 (90 + 683) = (1 + 38)20 + 68203 . 

This proves (4.3). Then (4.4) is immediate. [] 

Theorem 3 can be generalized to any X(t)  = H(W(t)) ,  where 

m 
~ " ~  h w 2k+ t  H ( w ) =  z.~ ~ , hk >O for all k .  
k=0  

Because such an H is an increasing function, we again have that F -1 (G(Y(t))) = 
H(Y(t)) .  Furthermore, for such an H, 

Cov(H(Y(t)) ,  H(Y( t  + j)))  = E(H(Y( t ) ) .  H(Y(t  + j)))  = / 4  (plJr) 

with 
r~ 

/~(0) = ~ h-k0 2~+1, h-k _> 0 for all k~ 
k=0  

To see this, let A, B be as in the proof of Theorem 3. Then from the identity 

a i b l 
~ l~:o ~" -~'E (aiBl) = E (eaa+bB) = E = " 

_~_ e(aO+b)2/2+(a~o)2/2 ~ eabO+a2/2+b2/2 

it follows that E (A 2k+l B 2k%1) is a polynomial in odd powers of 0 with nonneg- 
\ r  

ative coefficients. The step from (4.3) to (4.4) remains valid when the right side 
of (4.3) is any polynomial in pljl. Provided that the polynomial contains only odd 
powers of plj] and that no coefficient of these odd powers is negative, it follows 
that the power spectral density of Z monotonically decreases (or increases) with 
increasing frequency if the power spectral density of Y decreases (or increases) 
with increasing frequency. 

5. Numerical example 

To illustrate the method, we give numerical examples using MATLAB (version 
4.2c on a Unix workstation), first with T = 5, then with T = 1024. In this version 
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of MATLAB, a call to randJa produces a normally distributed pseudorandom 
value with mean 0 and standard deviation 1. The number returned from each call 
to r andn  is supposed to be statistically independent of the result from any other 
call to randn. 

With T = 5, five calls to randn  produced the time series X : X (1) = 1.0164 = 
X[51, X(2) = 0.4995 = X[41, X(3) = -0 .7754 = X[21, X(4) = -1.3084 = 
X[1], X (5) = -0.0475 = X[3]. In principle, a time series (sequence of random 
variables, not necessarily these particular data) defined in this way has a white 
power spectrum because successive elements are statistically independent, and 
therefore all frequencies are present with equal power in the power spectrum. 

To produce a time series Y with a reddened spectrum, we began by setting 
Y(1) = randxt as before (as each call to randn  is independent, Y(1) and X(1) 
need not be the same), then computed Y(t) = 0.9*Y(t - I) + 0.4359*randn for 
t = 2, 3, 4, 5. Because (0.9) 2 + (0.4359) 2 = 1, Y(t) is normally distributed with 
mean 0 and standard deviation 1 for each t, and Y is stationary. The result was: 
Y(1) = -0 .6658 = Y[4], Y(2) = -0.6379 = Y[5], Y(3) = -0 .7746 = Y[2], 
Y(4) = -0 .8109 = Y[1], Y(5) = -0.6927 = Y[3]. In principle, the positive 
serial autocorrelation among elements of Y reddens the power spectrum, Chat is, 
gives greater power at lower frequency. Here the functions F and G of Theorem 1 
would each be the standard normal distribution function. 

To obtain a reddened series Z with exactly the values of X and the approximate 
power spectrum of Y, we replaced each value of Y with the corresponding order 
statistic from X �9 Z(1) = X[4] = 0.4995, Z(2) = X[5] = 1.0164, Z(3) = 
X[2] = -0.7754, Z(4) = X[1] = -1.3084, Z(5) = X[3] = -0.0475. 

In this example, X(1) . . . .  , X(5) and Y(1) . . . . .  Y(5) are taken from a longer 
time series for X and Y with T = 1024. To illustrate the method and results with 
time series data of meaningful length, Figure 1 plots X and its power spectrum, 
obtained with the fast Fourier transform. (The power spectrum plotted shows the 
logarithm of the squared modulus or squared absolute value of elements 2 to 512 
of the 1024-element fast Fourier transform produced by the MATLAB function 
f f t . )  When a least-squares straight line is fitted to the plotted log-power spectrum 
as a function of the logarithm of the frequency (which runs from 1/1022 to I/2), 
the result is log(power) = -0.0048*log(index) + 6.3477. Here and later, the 
index runs from 1 to 511. The coefficient -0.0048 has a 95% confidence interval 
(-0.1201,  +0.1106), which includes zero, and P = 0.9354 for the null hypothesis 
that the slope is 0. (STEPWISE in the MATLAB Statistics Toolbox was used 
for the statistical computations [3].) By visual inspection, the power spectrum is 
approximately flat, hence X is approximately white. 

Figure 2 plots Y and its power spectrum. The values on the vertical axis of 
the power spectra (though not the time series) differ from those in Figure 1; the 
power is distributed differently over the frequencies. By least-squares, log(power) 
= -1.4994*tog(index) + 2.2072. The coefficient -1 .499 has a 95% confidence 
interval ( -1.616,  -1.383),  which excludes zero, as theory predicts. The power 
spectrum declines with increasing frequency, hence Y is reddened. 



SPECTRAL MIMICRY 4 3 9  

(a) t ime ser ies 
5 i , - -  l i - = 

-5 L p 
0 200  400  600  800  f 000  1200 

time 
(b) 

1 0 5  . . . .  T- ' -  , , - -  , , 

l ' I 't t I 

0 0 .05 0.1 0.15 0.2 0 .25 0.3 0.35 0.4 0.45 0.5 
f requency 

(e) 

- - . 5  L -  I . t I I , 
-7 -6 -5 -4 -3 -2 -i 0 

log f requency 

Figure 1. (a) A pseudo-white-noise time series X of length T = 1024; (b) its power 
spectrum as a function of frequency; (c) its power spectrum as a function of log-frequency, 
displayed together with a fitted least-squares line. 

Figure 3 plots Z and its power spectrum. The time series values of Z are identical 
to those of X, but the power spectrum declines with increasing frequency like the 
power spectrum of Y. By least-squares, log(power) = -1.4705*log(index) + 
2.3142. The coefficient - 1.471 has a 95% confidence interval ( -  1.581, - 1.360), 
which excludes zero and essentially coincides with the confidence interval of 
the slope coefficient for Y. Thus the slope coefficients of Y and Z do not differ 
statistically. 

6. Generalizations 

The method described here is potentially widely applicable. It is not restricted to 
generating pairs of time series with identical elements and different spectra: the 
same method could be used to obtain a trio of time series, one with a red, one with 
a white, and one with a blue spectrum, and all with the same elements permuted 
in different orders. The method could also be applied to signals that vary in space 
as well as in time. More generally, observations or data points could be indexed 
by a parameter that is multidimensional rather than single dimensional, as in the 
case of time. 
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Figure 2. (a) A pseudo-red-noise time series Y of length T = 1024; (b) its power spectrum 
as a function of frequency; (c) its power spectrum as a function of log-frequency, displayed 
together with a fitted least-squares line. 

The method does not require that the set of values {X(t)} be derived from a 
time series, because only the empirical distribution of  X is used. It is sufficient to 
select order statistics from an arbitrary CDF or to generate values in some other 
way. 

The method could be used to mimic other characteristics that depend on the or- 
der of data, in addition to the power spectrum as illustrated here. As one example, 
the method could mimic a sine wave of  one frequency with a sine wave of  another 
frequency using identical elements permuted in a different order. As another ex- 
ample, the method could be used to generate a time series Z, the first differences 
of  which are identical to the first differences o f  the given time series X, where the 
order statistics of the first differences of  Z occur in the same order as the order 
statistics of  the first differences of  Y. MATLAB [5] provides a first-difference 
function d i f f ,  so all that would be required is to compute the differences of  Z 
by d i f f z  = m•177 d i l l ( y ) )  and then to invert the differencing of  
Z by the cumulative-sum command z = cumsttm( [z0 ; c l i f f  z] ) ,  where the ini- 
tial value z0 is arbitrary and may be chosen to give z any desired location. The 
MATLAB function m i m i c ry  is described in the Appendix. More generally, if f is 
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Figure 3. (a) A pseudo-red noise time series Z with values identical to those in X; 09) 
its power spectrum as a function of frequency; (c) its power spectrum as a function of 
log-frequency, displayed together with a fitted least-squares line. 

an invertible function with inverse function g, one can compute a series Z whose 
elements are those of  f(X) (such as the differences of  X in the previous example) 
arranged according to the order statistics of  f(Y) by means o f g  (mim•  ( x ) ,  
:f (y)). 

Other areas of  science besides ecology could exploit this method. For example, it 
could be used to examine responses to varying spectra in other biological systems, 
such as individual nerve cells, nervous tissues, and the auditory or other organ 
systems. 

Appendix: MATLAB program 

A simple program or function in MATLAB [5] carries out spectral mimicry. This 
function depends on the MATLAB-provided function s o r t ,  which works as fol- 
lows. If  x is a vector of  real numbers, the statement [ x s o r t ,  x index]  = s o r t ( x )  
places in the vector x s o r t  the elements of  x arranged in ascending order. The 
vector x i n d e x  gives the indices of  the elements in x in the sorted order; that is, 
x s o r t  = x(x index) .  For example, i fx  = (4, 3), then x s o r t  = (3, 4), x i n d e x  = 
(2, 1 ) .  
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function z = mimicry (x,y) 

7. z = mimicry(x,y) 

~. x, y: 2 real vectors of length T 

~. z: real vector of length T in which the elements of x 

*/. occur in the same rank order as the elements of y 

~. 10 September 1995 

[xsort,xindex] = sort(x) ; 

[ysort,yindex] = sort(y) ; 

[zsort,zindex] = sort(yindex) ; 

z = xsort(zindex); 

return 

That  there is a 1 to 1 correspondence between elements  of  X and elements  

of  Z is clear f rom this code because x s o r t  is a permutat ion of  the elements  of x, 

and z is a permuta t ion  of  the elements  of  x s o r t  and therefore also a permutat ion 

of  the e lements  of  x. 
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