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SPECTRAL MIMICRY: A METHOD OF
SYNTHESIZING MATCHING TIME
SERIES WITH DIFFERENT FOURIER
SPECTRA*
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Abstract. Given a stationary time series X and another stationary time series ¥ (with a
different power spectral density), we describe an algorithm for constructing a stationary
time series Z that contains exactly the same values as X permuted in an order such that
the power spectral density of Z closely resembles that of Y. We call this method spectral
mimicry. We prove (under certain restrictions) that, if the univariate cumulative distribution
function (CDF) of X is identical to the CDF of Y, then the power spectral density of Z
equals the power spectral density of ¥. We also show, for a class of examples, that when the
CDFs of X and Y differ modestly, the power spectral density of Z closely approximates the
power spectral density of Y. The algorithm, developed to design an experiment in microbial
population dynamics, has a variety of other applications.

1. Introduction

Suppose that we are given two scalar-valued time series X and Y of equal fi-
nite length, i.e., two samples of the same finite duration from different stationary
stochastic processes on the natural numbers. (For an accessible introduction to the
concepts and terminology of stationary time series, see, €.g., {4, Chapter 47].) We
describe here a method of constructing a third time series Z that contains exactly
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the same elements as X permuted so that the power spectral density of Z resem-
bles the power spectral density of Y. We call this method spectral mimicry. We
shall prove (under certain restrictions) that, if the univariate cumulative distribu-
tion function (CDF) of the stochastic process that generates X is identical to the
CDF of the stochastic process that generates Y, then the power spectral density of
Z equals the power spectral density of Y. We also show, for a class of examples,
that when the CDFs of X and Y differ modestly, the power spectral density of Z
closely approximates the power spectral density of Y.

The development of spectral mimicry was motivated by the need to design an ex-
periment in microbial population dynamics {2]. Ecological theorists have predicted
that the relative importance of high-frequency versus low-frequency fluctuations
in environmental features such as temperature will affect the composition and dy-
namics of ecological communities [6]-[8], [1]. However, the impact of the shape
of the power spectrum of an environmental parameter on the population dynamics
of individual species remained to be investigated experimentally. If one popula-
tion of microbes were grown in an environment where the temperature fluctuated
like a white noise (i.e., with a power level independent of frequency), and another
population experienced temperatures that fluctuated like a red noise (i.e., with a
power level that decreases with increasing frequency), how would the population
dynamics of the microbes be affected?

The experiment required the construction of two types of times series of tem-
peratures — one type approximating white noise and the other approximating red
noise — which were otherwise as similar as possible. Generating white noise (the
series X described in the first paragraph) is easily done by sampling from a pseu-
dorandom number generator. Generating red noise (the series Y of the first para-
graph) is easily done by generating the simplest nontrivial autoregressive series, a
Markov-Gaussian process [4, Example 47.7, p. 418] with positive autocorrelation.
The method of spectral mimicry then makes it possible to generate a red noise
having exactly the values of X and the power spectral density of Y. We shali prove
these assertions and give a numerical example.

2. The method

We denote time series data of finite positive length 7 by X = (X(1), X(2),...,
X (T)), where the elements occur in the order X (1), X(2},..., up to X(7). We
denote by {X (£)} the sequence of elements of X without regard to temporal order,
and by X[1] < X[2] < --- < X[T]the T order statistics of X, that is, the elements
of X rearranged in nondecreasing order. For example, X[1] = min {X(¢}} and
X[T] = max {X (¢)}. We use identical notation for the other time seties ¥ and Z.

We assume that the data X are generated by a stationary sequence of random
variables with finite mean and variance. We assume that an equally long sequence of
data Y are generated by another stationary sequence of other random variables with
finite mean and variance, and that { X (¢)} differs from {¥ (¢)}. We aim to construct
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a sequence Z that has exactly the same values as X, i.e., {X(#)} = {Z(2)}, such
that, asymptotically as T becomes large, the time series Z has a power spectrum
with the same relative shape (i.e., increasing or decreasing with frequency) as that
of Y.

To achieve this, we construct Z from Y by replacing each element of Y by the
corresponding order statistic of X. Thatis, if Y (¢) = Y[s], we define Z(t) = X[s],
fort = 1,..., T. It is then obvious that {X (#)} = {Z(¢)}, i.e., the elements of X
and Z are identical apart from order.

3. Exact results

Recall that we use the term stochastic process to refer to a sequence of random
variables, and the term time series to refer to a data sequence (e.g., one sampled
from some stochastic process). For any set {-}, let #{-} denote the number of
elements in the set {-}. Let X (1), X(2),... and Y (1), Y(2), ... be time series (of
infinite length) with the following property: There exist functions F (x) and G(y),
where F and G are nondecreasing functions defined on the entire real line and
taking values in [0, 1], such that as T — oo,

1
for every real x, ?#{t l<t<Tand X@) <x}—= F(x), (.1

1
for every real y, T#{t 1 <¢t<Tand YO) <y} > GH»). (.2

Assume that Y(1), Y (2), ... areall distinctand define S7, S, ..., ST (depend-
ing on Y (1),...,Y(T))so that Y(t) = Y [S]] fort = 1,2,..., T (where Y[S]
are the order statistics for ¥). Define Z7(¢) for 1 <t < T by Z7(t) = X [ST].
(This is the method of spectral mimicry.) We do not assume that X (1), X (2), ...
are all distinct.

When F is a strictly increasing function (i.e., if F(x;) < F(xz) whenever
X1 < x2), we define a function F~1(x) on [0, 1] as follows. First denote by F(x—)
and F{x+), respectively, the limits from the left and the right of F at x and denote
by F(—o0) and F(400) the limits as x — —o0 and x — +00 of F. Then define
the (unique) x such that
F(x—) <u < F(x+),
—00, if x < F(—00),
+o0, if x = F(4c0).
If ¥ is continuous as well as strictly increasing (as is the standard normal distri-
bution function), then F~! is just the inverse function of F.

if F(—oc0) < x < F(400),

Flw) = (3.3)

Theorem 1. If F is strictly increasing, then for any fixed ty, as T — 00,
ZM (1) = Y1) = F~ (G(Y (10))) , 3.4
where F~1 is defined by (3.3).
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Proof. It follows directly from (3.2) (with y = Y (#)) that
lim SI/T =G (Y(w)) . (3.5)
T—o0 0
It similarly follows from (3.1) thatif u € [0, 1] and Wy takes valuesin {1,2,..., T},

then
Wr/T — u implies X{Wr] - F~ (). (3.6)

Taking Wr = Stg and combining (3.5) and (3.6) yield (3.4).

{1

If X and Y are stationary stochastic processes and (3.1) and (3.2) are valid with
probability 1 (for which we henceforth write w.p.1), then F(x) = P {X < x}
with F(—o00) = 0, F(+00) = 1 (F is the univariate CDF of X), and similar
formulae apply to G and Y. This will be the case for any ergodic stationary process,
including, for example, Gaussian stochastic processes, where the CDF is a normal
distribution function. Now Y (1), Y(2), ... cannot all be distinct w.p.1 unless G is
continuous, and then w.p.1, G(Y (1)) # 0. We then have the following extension
of Theorem 1, where F need not be strictly increasing.

Theorem 2. If X and Y are stationary stochastic processes such thas (3.1 and
(3.2) are valid wp.1, and Y (1), Y(2), ... are distinct w.p.1, then for any fixed 15,
(3.4) is valid w.p.1, where F~\ is defined for 0 < u < 1 by

F_l(u) =sup{x: F(x) <u}. 3.7

If. in addition, every X(t) is a bounded random variable (i.e., F(a) = 0 and
F(b) = 1 for some —00 < a < b < ), then for any fixed ty, . . ., tp,

Jim E(Z7 (@) 27 a) = E (@) F@w) | (3.8)
where Y (t) is defined on the right side of (3.4), and thus for any fixed t, T
lim Cov(27(), 2 ¢+ ) =Cov (Y, Z¢+D) . 3G9
T—o00 .

Proof. The derivation of (3.4) in this case requires verifying, analogously o (3.6),
thatif Wy /T — G(Y ()) w.p.1, then X[Wr] — F~YG(¥ (tp))) w.p.1, with the
definition (3.7) of F~!, when u € (0, 1) is such that F(x) = u on some nonempty
interval (x;, x2). This follows from the fact that w.p.1, no X (¢) takes values in such
an interval. Then (3.8) easily follows from (3.4) because the X (¢)’s are bounded,
and (3.9) follows from the n = 1 and #n = 2 cases of (3.8). O

The right side of (3.9) is the autocovariance of Y, from which its power spectrum
can be computed. Moreover, (3.7) is a standard definition that guarantees that
F~Y(U) has the distribution F, where U is uniform on (0, 1).

If the hypothesis that Y (1), Y(2), ... all be distinct is dropped, then & may not
be continuous, and there is a problem in defining S because of possible ties in
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the data. One solution is to break ties “at random,” which we define precisely as
follows.

Let U(1), U(2),... be random variables that are each uniformly distributed on
(0, 1), mutually independent, and independent of Y. We will break any ties (and
hence obtain well-defined values of ST and Z7 (£)) among, say, Y (1), . .., ¥ (tn) by
treating Y (t;) aslessthan Y (1) if Y (4;) = Y (¢;) but U(5;) < U (¢;). Then Theorem 2
remains valid, with essentially the same proof, if we change the definition of Y in
(34) to

Y(t0) = F~1 (G* (¥ (%0), Ut0)))

where G*(y, u) is defined forreal y and u € (0, 1) as

G*'(y,u) =Gy—)+u(GY) - GOr-)) .

If y is a continuity point of G, then G*(y,u) = G(y). Whether or not G is
continuous, G*(Y (fp), U (o)) is uniformly distributed on (0, 1).

Theorem 1 covers the numerical example in Section 5 (if we disregard the
distinction between pseudorandom and random) because the distribution F of
values of X and the distribution G of values of Y are both normal with mean 0 and
variance 1, hence F~1 o G is the identity. Thus Z T(to), as a sequence of random
variables indexed by T, converges as 7 — oo, w.p.1, to Y (), so Z TanZT (1)
converges almost surely to the corresponding product ¥ (¢1)Y (%), and so finally
the stochastic processes Y and Z have the same power spectrum.

4. Spectral mimicry for a nonlinear function of normal
random variables

Numerical results not shown here suggest that the power spectral density of Z will
sometimes inherit the redness or blueness (dominance of low or high frequencies,
respectively) of the power spectral density of ¥ when F~1 o G is not the identity.
‘We demonstrate why that should be so in an example to illustrate computations
that could be carried out for other cases.

Let {(W(#):2=1,2,...} be a sequence of independent and identically dis-
tributed (i.i.d.) normal random variables with mean 0 and variance 1 (“standard”
normal). For fixed § # 0,1et X (¢) = W) +8(W(®))>. Then{X () : 1 =1,2,...}
is a stationary discrete-time process that is not normally distributed. Using E(W?)
= 1, E(W* = 3, E(W®% = 15, X has variance Var(X (t)) = 1 + 65 + 1552.
Because {X (¢) : ¢ = 1, 2,...}areii.d., the power spectral density of X is flat, i.¢.,
X is a white noise.

Suppose that {Y(¢) : ¢t = 1,2,...} is a stationary discrete-time Markov-Gaus-
sian process, i.e., for some p € (—1,+1) andforallz > 1,Y(t) = pY(t - 1) +
(1 — p®)1/2¢(t), where £(t) and Y (1) are i.i.d. standard normal. (In [4, pp. 418
419], Kendall and Stuart analyze this case and use this name for it.) Then Y (¢) is
standard normal for all ¢. The autocorrelation and autocovariance between Y (¢)



436 CoOHEN, NEWMAN, COHEN, PETCHEY, AND GONZALEZ

and Y (t + j) are pY!. For frequency « € [0, ], the spectral density of ¥ is
1-p?

. 4.1)
2pcosa + p? N

o0
wia) = Wlgioi =
(@) j;m p —
As the frequency o increases, the spectral density decreases when p > § and
increases when p < 0, corresponding to red noise (dominated by low frequencies)
and blue noise (dominated by high frequencies}, respectively.
Let Z be constructed by the method of spectral mimicry, replacing each element
of Y by the corresponding order statistic of X. Then by Theorem 1, for any fixed
to,as T — 00, ZT (tg) = F~H(G(¥ (t0))).

Theorem 3. With X, Y, and Z as just defined, and with § > O, we have, for any
integer j, in the large-sample limit as T — oo:

Zy =Y +6(X @), (4.2)
Cov(Z(t), Z(t + j)) = (1 + 38)2plil 4 66231, (4.3)
and the spectral density of Z is
T & .
— H 1144
W) = g 2 CovZ, 20 + e
j=—00
Iod 2
—p
= | (14 34)?
{( +38) 1 —2pcosa + p?
e 1=F° /(1 + 68 + 156%) (4.4)
1—2p3cosar + pb N ' N

Like the spectral density of Y, this spectral density of Z decreases (with increasing
frequency o) when p > 0 and increases when p < 0.

Proof. To prove (4.2), ic., that Z() = H(Y(r)) with H(y) = y + 8y°, we
must show that F~1(G()) = H(y) or equivalently that G(y) = F(H(y)).
Now G(y) = P(Y(t) < y) = P(W(@) < y) and F(x) = P(X(t) < x) =
P(H(W(1)) < x) sothat F(H(y)) = P(H(W(r)) < H(y)) = P(W(t) < y) as
desired. The last equality uses the fact that for § > 0, H is an increasing function.

Now Cov(Z (1), Z(t + j)) = Cov(Y 1) + (Y (1)), Y (1 4+ ) + (Y (¢ + j))°).
To simplify the notation, we fix ¢ and j and write A = Y (¢), B = Y (¢ 4 j). Then
A and B are standard normal with Cov(A, B) = pV/! = 0, and there exists a third
standard normal random variable C such that A = 6 B + ¢C, where 62 + ¢? = 1
and Cov(B, C) = 0. Hence for any functions f, g, Cov(f(B), g(C)) = 0 and
Cov(f(B), g(B) - C) = E(f(B)g(B)) - E(C) — E(f(B)E((B)E(C) = 0.
Then

A+8A% = (6B +¢C)+80BB + ¢C)>
— 0B + 56°B? + 35629 B2C + 33002 BC? + [(pC + 3<p3c3]
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and

Cov (A +8A% B+ 533)

= Cov (B +8B%,0B + 59333) YO+ E ((B + 5B3)369¢2B) +0

E ((B +5B%©6B + 663B3)) 436007 - 1+ 3862092 -3

61+ (80+60%) -3+ 6% 15 + 3600 + 95704
= 0+660 +6% (9 +66°) = (1 +38)% + 657" .
This proves (4.3). Then (4.4) is immediate. 0
Theorem 3 can be generalized to any X (¢#) = H(W (¢)), where

m
H(w) = thw2k+‘, hi >0 forall k.
k=0

Because such an H is an increasing function, we again have that ¥ NGy =
H (Y (t)). Furthermore, for such an H,

Cov(H(Y (1)), HY(t + j)) = E(HY ®) - HX (¢ + j)) = H (pV")
with )
e m ~ L
H®) = the”‘“, i >0 forall k.
k=0
To see this, let A, B be as in the proof of Theorem 3. Then from the identity

Z Z T E (A Bl =E (eaA+bB) =F (eawB+‘/’C)+bB)

i=0 =0
— e(a9+b)2/2+(aga)2/2 — eaba+a2/2+b2/2

it follows that E (A2k+1 BZki“) is a polynomial in odd powers of 6 with nonneg-
ative coefficients. The step from (4.3) to (4.4) remains valid when the right side
of (4.3) is any polynomial in p!/!. Provided that the polynomial contains only odd
powers of pl/! and that no coefficient of these odd powers is negative, it follows
that the power spectral density of Z monotonically decreases (or increases) with
increasing frequency if the power spectral density of ¥ decreases (or increases)
with increasing frequency.

5. Numerical example

To illustrate the method, we give numerical examples using MATLAB (version
4.2¢ on a Unix workstation), first with T = 5, then with T = 1024, In this version
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of MATLAB, a call to randn produces a normally disiributed pseudorandom
value with mean 0 and standard deviation 1. The number returned from each call
to randn is supposed to be statistically independent of the result from any other
call to randn.

With T = 5, five calls to randn produced the time series X : X(1) = 1.0164 =
XI51, X(2) = 0.4995 = X[4], X(3) = —0.7754 = X[2], X(4) = —1.3084 =
X[1], X(5) = —0.0475 = X[3]. In principle, a time series (sequence of random
variables, not necessarily these particular data) defined in this way has a white
power spectrum because successive elements are statistically independent, and
therefore all frequencies are present with equal power in the power spectrum.

To produce a time series ¥ with a reddened spectrum, we began by setting
Y (1) = randn as before (as each call to randn is independent, Y (1) and X (1)
need not be the same), then computed Y () = 0.9*Y (¢ — 1) + 0.4359*randn for
t =2,3,4,5. Because (0.9)% + (0.4359)2 = 1, Y (1) is normally distributed with
mean 0 and standard deviation 1 for each ¢, and ¥ is stationary. The result was:
Y(1) = —0.6658 = Y[4], Y(2) = —0.6379 = Y[5], Y(3) = —0.7746 = Y2},
Y(4) = —0.8109 = Y[1], Y(5) = —0.6927 = Y[3]. In principle, the positive
serial autocorrelation among elements of ¥ reddens the power spectrum, that is,
gives greater power at lower frequency. Here the functions F and G of Theorem 1
would each be the standard normal distribution function.

To obtain a reddened series Z with exactly the values of X and the approximate
power spectrum of Y, we replaced each value of Y with the corresponding order
statistic from X : Z(1) = X[4] = 0.4995, Z(2) = X{[5] = 1.0164, Z(3) =
X[2] = —0.7754, Z(4) = X{1] = —1.3084, Z(5) = X[3] = —0.0475.

In this example, X (1),..., X(5) and ¥ (1),..., ¥Y(5) are taken from a longer
time series for X and Y with 7 = 1024. To illustrate the method and results with
time series data of meaningful length, Figure 1 plots X and its power spectrum,
obtained with the fast Fourier transform. (The power spectrum plotted shows the
logarithm of the squared modulus or squared absolute value of elemenis 2 to 512
of the 1024-element fast Fourier transform produced by the MATLAB function
££t.) When a least-squares straight line is fitted to the plotted log-power spectrum
as a function of the logarithm of the frequency (which runs from 1/1022 to 1/2),
the result is log(power) = —0.0048%log(index) + 6.3477. Here and later, the
index runs from 1 to 511, The coefficient —0.0048 has a 95% confidence interval
(—0.1201, +0.1106), which includes zero, and P = (.9354 for the null hypothesis
that the slope is 0. (STEPWISE in the MATLAB Statistics Toolbox was used
for the statistical computations [3].) By visual inspection, the power spectrum is
approximately flat, hence X is approximately white.

Figure 2 plots ¥ and its power spectrum. The values on the vertical axis of
the power spectra (though not the time series) differ from those in Figure 1; the
power is distributed differently over the frequencies. By least-squares, log{power)
= —1.4994*log(index) + 2.2072. The coefficient —1.499 has a 95% confidence
interval {~1.616, —1.383), which excludes zero, as theory predicts. The power
spectrum declines with increasing frequency, hence Y is reddened.
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(a} time series

value
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o

0 r I g
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log frequency

Figure 1. (a) A pseudo-white-noise time series X of length T = 1024; (b) its power
spectrum as a function of frequency; (c) its power spectrum as a function of log-frequency,
displayed together with a fitted least-squares line.

Figure 3 plots Z and its power spectrum. The time series values of Z are identical
to those of X, but the power spectrum declines with increasing frequency like the
power spectrum of Y. By least-squares, log(power) = —1.4705*log(index) +
2.3142. The coefficient —1.471 has a 95% confidence interval (—1.581, —1.360),
which excludes zero and essentially coincides with the confidence interval of
the slope coefficient for Y. Thus the slope coefficients of ¥ and Z do not differ
statistically.

6. Generalizations

The method described here is potentially widely applicable. It is not restricted to
generating pairs of time series with identical elements and different spectra: the
same method could be used to obtain a trio of time series, one with ared, one with
a white, and one with a blue spectrum, and all with the same elements permuted
in different orders. The method could also be applied to signals that vary in space
as well as in time. More generally, observations or data points could be indexed
by a parameter that is multidimensional rather than single dimensional, as in the
case of time.
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(a) time series
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Figure 2. (a) A pseudo-red-noise time series Y of length T = 1024; (b) its power spectruim
as a function of frequency; (c) its power spectrum as a function of log-frequency, displayed
together with a fitted least-squares line.

The method does not require that the set of values {X ()} be derived from a
time series, because only the empirical distribution of X is used. It is sufficient to
select order statistics from an arbitrary CDF or to generate values in some other
way.

The method could be used to mimic other characteristics that depend on the oz-
der of data, in addition to the power spectrum as illustrated here. As one example,
the method could mimic a sine wave of one frequency with a sine wave of another
frequency using identical elements permuted in a different order. As another ex-
ample, the method could be used to generate a time series Z, the first differences
of which are identical to the first differences of the given time series X, where the
order statistics of the first differences of Z occur in the same order as the order
statistics of the first differences of Y. MATLAB [5] provides a first-difference
function diff, so all that would be required is to compute the differences of Z
by diffz = mimicry(diff(x), diff(y)) and then to invert the differencing of
Z by the cumulative-sum command z = cumsum([z0; diffz]), where the ini-
tial value z0 is arbitrary and may be chosen to give z any desired location. The
MATLAB function mimicry is described in the Appendix. More generally, if £ is
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(@) time series
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Figure 3. (a) A pseudo-red noise time series Z with values identical to those in X; (b)
its power spectrum as a function of frequency; (c) its power spectrum as a function of
log-frequency, displayed together with a fitted least-squares line.

an invertible function with inverse function g, one can compute a series Z whose
elements are those of f(X) (such as the differences of X in the previous example)
arranged according to the order statistics of f(Y) by means of g(mimicry (£ (x),
£(y)).

Other areas of science besides ecology could exploit this method. For example, it
could be used to examine responses to varying spectra in other biological systems,
such as individual nerve cells, nervous tissues, and the auditory or other organ
systems.

Appendix: MATLAB program

A simple program or function in MATLAB [5] carries out spectral mimicry. This
function depends on the MATLAB-provided function sort, which works as fol-
lows. If x is a vector of real numbers, the statement [xsort, xindex] = sort(x)
places in the vector xsort the elements of x arranged in ascending order. The
vector xindex gives the indices of the elements in x in the sorted order; that is,
xsort = x(xindex). For example, if x = (4, 3), then xsort = (3, 4), xindex =
(2, 1).
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function z = mimicry (x,y)

% z = mimicry(x,y)

% X, y: 2 real vectors of length T

% z: real vector of length T in which the elements of x
% occur in the same rank order as the elements of y
% 10 September 1995

[xsort,xindex] = sort(x);

[ysort,yindex] = sort(y);

[zsort,zindex] = sort(yindex);

z = xsort(zindex);

return

That there is a | to 1 correspondence between elements of X and elements
of Z is clear from this code because xsort is a permutation of the elements of x,
and z is a permutation of the elements of xsort and therefore also a permutation
of the elements of x.
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